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Abstract	
  	
  
Learning to make rewarding choices in response to stimuli depends on a slow but steady 

process, reinforcement learning, and a fast and flexible, but capacity limited process, 

working memory. Using both systems in parallel, with their contributions weighted based 

on performance, should allow us to leverage the best of each system: rapid early learning, 

supplemented by long term robust acquisition. However, this assumes that using one 

process does not interfere with the other. We use computational modeling to investigate 

the interactions between the two processes in a behavioral experiment, and show that 

working memory interferes with reinforcement learning. Previous research showed that 

neural representations of reward prediction errors, a key marker of reinforcement 

learning, were blunted when working memory was used for learning. We thus predicted 

that arbitrating in favor of working memory to learn faster in simple problems would 

weaken the reinforcement learning process. We tested this by measuring performance in 

a delayed testing phase where the use of working memory was impossible, and thus 

subject choices depended on reinforcement learning. Counter-intuitively, but confirming 

our predictions, we observed that associations learned most easily were retained worse 

than associations learned slower: using working memory to learn quickly came at the cost 

of long-term retention. Computational modeling confirmed that this could only be 

accounted for by working memory interference in reinforcement learning computations. 

These results further our understanding of how multiple systems contribute in parallel to 

human learning, and may have important applications for education and computational 

psychiatry.
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Introduction	
  
When facing a challenge (such as responding to a natural disaster), we often need to 

pursue two solutions in parallel: emergency measures for the immediate future, and 

carefully thought-out long-term plans. These measures make different trade-offs between 

speed and efficiency, and neither is better than the other in absolute. Allocating finite 

resources to multiple strategies that involve such different trade-offs can mitigate their 

limitations and make use of their benefits. Recent work shows that human learning, even 

in very simple environments, follows this principle: it involves multiple parallel 

neurocognitive systems that arbitrate differently between immediate, effortful efficacy, 

and slower, long-term robustness (Bornstein, Khaw, Shohamy, & Daw, 2017; Collins & 

Frank, 2012; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; R. Poldrack et al., 

2001). In this article, we present a new experiment to computationally characterize how 

these systems work together to accomplish short- and long-term learning. 	
  
 

We focus on two well-defined systems, reinforcement learning (RL) and working 

memory (WM). WM enables fast and accurate single-trial learning of any kind of 

information, with two limitations – a capacity or resource limit, and a temporal limit, 

such that we can only accurately remember a small amount of information for a short 

time, after which we may forget (Baddeley, 2012). RL, in contrast, enables slower but 

robust reward-based learning of the value of choices (Dayan & Daw, 2008). Separable 

(yet partially overlapping) brain networks support these two systems: WM is centrally 

dependent on prefrontal cortex (Cools, 2011; Miller & Cohen, 2001), while RL relies on 

dopaminergic signaling in the striatum (Frank & O’Reilly, 2006; Montague, Dayan, & 

Sejnowski, 1996; Schultz, 2013; Tai, Lee, Benavidez, Bonci, & Wilbrecht, 2012). We 

previously developed a simple experimental protocol to show that both systems are used 

in parallel for instrumental learning (Collins, Ciullo, Frank, & Badre, 2017; Collins & 

Frank, 2012). In this protocol, participants used deterministic feedback to learn the 

correct action to pick in response to a stimulus; critically, in different blocks, they needed 
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to learn associations for a different number of stimuli in a new set. This set size 

manipulation allowed us to disentangle the contributions of WM to learning from those 

of RL, because WM is capacity-limited (Cowan, 2010), while RL is not. In particular, 

this manipulation was essential in identifying which of the systems was causing learning 

dysfunction in clinical populations (Collins, Albrecht, Waltz, Gold, & Frank, 2017; 

Collins, Brown, Gold, Waltz, & Frank, 2014). 

  

However, how the two systems interact is still poorly understood. Previous models 

assumed that the RL and WM systems compete for choice, but otherwise learn 

independently of each other. In particular, if RL was fully independent from WM, values 

learned through RL should only depend on reward history, and be independent of set size. 

Recent evidence shows that this may not be the case, and that WM may instead interfere 

in RL computations. Indeed, in an fMRI study, we showed that RL signals were blunted 

in low set sizes, when working memory was sufficient to learn stimulus-response 

associations (Collins, Ciullo, et al., 2017). These results were confirmed in an EEG study 

(Collins & Frank, submitted), where we additionally found that trial-by-trial markers of 

WM use predicted weaker RL learning signals. Last, we found behavioral evidence that 

the value of different items was better retained when learned under high load than under 

low load (Collins, Albrecht, Waltz, Gold, & Frank, 2017), again hinting at an interference 

of WM with RL computations.  Together, these results hint at a mechanism by which RL 

learning is weakened in low set sizes, when working memory is most successful. We 

hypothesize that successful WM use (in particular in low set sizes) may interfere with 

RL, either by inhibiting learning, or, more consistently with our most recent EEG 

findings, by communicating to the RL system its quickly acquired expectations and thus 

making positive reward prediction error signals less strong.  

 

In this project, we further investigate the nature of interactions between WM and RL 

during learning. Specifically, we propose an improvement to our previous protocol that 

allows us to 1) characterize short-term learning vs. long-term learning and retention, 2) 

investigate how WM use impacts both forms of learning, and 3) computationally 

characterize the complete, integrated, interactive learning process. In the new protocol 
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(Fig. 1A), the learning phase includes multiple blocks of one of two set sizes – low (3) 

and high (6); after a short, irrelevant task to provide a delay, the experimental protocol 

ends with a surprise testing phase in extinction to assess the retention of the associations 

acquired during the learning phase. This testing phase probes how well participants 

remember the correct choice for all the stimuli they learned previously. We hypothesize 

that WM plays no direct role in testing phase choices (Fig. 1B) because, in the absence of 

feedback, no new information is available in the testing phase: participants decide based 

on experience acquired more than 10 minutes prior, for 54 different stimulus-action 

associations, both beyond the extent of working memory maintenance. Thus, the testing 

phase serves as a purer marker of RL function than could be obtained with the original 

design (Collins & Frank, 2012), allowing us to observe how RL-learned associations 

depend on the learning context (high/low set size); and thus to investigate the interaction 

of WM and RL.  

 

Based on our previous imaging results showing blunted RL signals in low set sizes, we 

made the counter-intuitive prediction that retention of associations learned under low set 

sizes would be worse than in high set sizes (Fig. 1C). Furthermore, we predicted that a 

model incorporating interference of WM in RL computations (Fig. 1B, methods) would 

capture behavior better than models assuming either single systems or independent WM 

and RL modules competing for choice.     

Methods	
  

Subjects	
  

We first tested 49 University of California, Berkeley undergraduate students (31 female; 

ages 18-40, mean 20.5). To replicate the results obtained with this first sample, we then 

tested a second, independent sample, which included 42 University of California, 

Berkeley undergraduate students (26 female; ages 18-29, mean 20.7). Because the effects 

in the second sample fully replicated the results obtained with the first sample, we report 

here the results with participants pooled together. We excluded 6 participants based on 

poor overall performance in the task indicating lack of involvement (less than 75% 
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average accuracy at asymptotic performance). The final sample included N = 85 

participants. All participants provided written informed consent, and the Committee for 

the Protection of Human Subjects at the University of California, Berkeley, approved the 

research. 
Figure 1: A) Experimental 
protocol. Left: the experiment 
includes a learning phase with 14 
learning blocks of set size ns=3 or 
6; followed by a short irrelevant 
task and a surprise testing phase. 
Right: examples of learning phase 
and testing phase trials. B) Model 
schematic. We assume that WM 
and RL both contribute 
competitively to choice during 
learning; the weight η of WM vs. 
RL for choice depends on the 
capacity and set size. WM stores 
exact information but may forget; 
RL learns from reward prediction 
errors (RPE) the value of selecting 
an action for a given stimulus (e.g. 
the triangle). We additionally 
hypothesize that WM influences 
RL computations (dashed arrow) 
by contributing expectations to the 
computation of the RPE. Testing 
phase does not involve WM 
contributions, but only RL. C) 
Model predictions (schematic): if 
η(ns=3)<η(ns=6), the model 

predicts worse performance under high load during learning; however items learned under high load are 
predicted to be better retained during testing, because WM interferes less with RL. 
 

Experimental	
  protocol	
  

General	
  

The methods are modified from previous published versions of this experimental protocol 

(Collins, Albrecht, et al., 2017; Collins et al., 2014; Collins, Ciullo, et al., 2017; Collins 

& Frank, 2012, submitted) . Subjects performed a learning experiment in which they used 

reinforcement feedback (“+1” or “0”) to figure out the correct key to press in response to 

several visual stimuli (Fig. 1A). The experiment was separated into three phases: a 

learning phase comprising multiple independent learning blocks (mean duration 26 min, 

range [22-34]); an unrelated memory task (mean duration 11 min, range [10-16]; and a 
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surprise testing phase assessing what was retained from the learning phase (mean 

duration 7 min, range [6-8]). 

Learning	
  phase	
  

The learning phase was separated into 14 blocks, with a new set of visual stimuli of set 

size ns in each block, with ns=3 or ns=6. Each block included 12-14 presentations of 

each visual stimuli in a pseudo-randomly interleaved manner (controlling for a uniform 

distribution of delay between two successive presentations of the same stimulus within 

[1:2*ns] trials, and the number of presentations of each stimulus), for a total of ns*13 

trials. At each trial, a stimulus was presented centrally on a black background. Subjects 

had up to 1.5 seconds to answer by pressing one of three keys with their right hand. Key 

press was followed by visual feedback presentation for 0.5 seconds, followed by a 

fixation of 0.5 seconds before the onset of the next trial. For each image, the correct key 

press was the same for the entire block. Pressing this key led to a truthful “+1” feedback, 

while pressing any other key led to a truthful “0” feedback. Failure to answer within 1.5 

seconds was indicated by a “no valid answer” message. Stimuli in a given block were all 

from a single category (e.g. colors, fruits, animals), and did not repeat across blocks.  

 

We varied the set size ns across blocks: out of 14 blocks, 8 had set size ns=3 and 6 set 

size ns=6. The first and last block of the learning phase were of set size ns=3. We have 

shown in previous research that varying set size provides a way to investigate the 

contributions of capacity- and resource-limited working memory to reinforcement 

learning. 

 

N-­‐back	
  

Following the learning phase, participants performed a classic visual N-back task (N = 2-

5). The purpose of this phase was to provide a time buffer between the learning phase and 

the surprise testing phase. We do not analyze the N-back performance here. 
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Testing	
  phase	
  

At the end of the N-back task, participants were informed that they would be tested on 

what they had learned during the first phase of the experiment. The testing phase 

included a single block where all stimuli from the learning phase (excepting block 1 and 

block N to limit recency and primacy effects – thus a total of 54 stimuli: 36 learned in set 

size 6, and 18 learned in set size 3 blocks) were presented 4 times each, for a total of 216 

trials. The order was pseudo-randomized to ensure that each stimulus was presented once 

in each quarter of the test phase. Each trial was identical to the learning phase, except that 

no feedback was presented so that participants could not learn during this phase.  

 

Model	
  free	
  analysis	
  

Learning	
  phase	
  

Learning curves were constructed by computing the proportion of correct answers to all 

stimuli of each set size as a function of their iteration number. Trials with missing 

answers were excluded. Reaction time learning curves were limited to correct choices. 

Asymptotic performance/reaction times were assessed over the last 6 presentations of 

each stimulus.  

 

We also used a multiple logistic/linear regression analysis to predict correct 

choices/reaction times in the learning phase. The main predictor was the “reward” 

predictor (#R), which indicated the number of previous correct choices for a given 

stimulus and was expected to capture the effect of reward history on learning (Collins & 

Frank, 2012). Predictors expected to capture working memory contributions were 1) the 

set size ns of the block in which a stimulus was learned and 2) the delay, or number of 

trials since the subject last selected the correct action for the current stimulus (Fig. 1A). 

Last, we also included the block number to investigate whether exposure to the learning 

phase modified performance. All regressors were z-scored prior to entering into the 

regression model. For visualization purposes in figures 2 and 5, weights are sigmoid 

transformed and scaled to [-1,1] (keeping 0 as the no effect value). Specifically, the 

transformation is βß(2/(1+exp(-β)))-1. 
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Testing	
  phase	
  

We computed the performance as the proportion of correct choices separately for stimuli 

that had been learned in blocks of set size ns = 3 or ns = 6. We also used multiple 

logistic/linear regression analysis for the testing phase, with reward, set size, and block 

regressors. The reward regressor was the asymptotic performance for a given stimulus; 

and the set size and block regressors were defined as the set size and block number of the 

block during which a given stimulus had been learned in the learning phase. 

Errors	
  

To investigate the types of errors made during the testing phase we identified a set of 

stimuli that met the following criteria: 1) the participant had made at least one mistake for 

that stimulus during the learning phase, and 2) one of the two incorrect actions had been 

selected more often than the other during the learning phase. This allowed us to define for 

the testing phase a perseverative error as choosing the action that had been selected most, 

and an optimal error as choosing the erroneous action that had been selected least (this 

would correspond to best avoidance of previously unrewarding actions). We computed 

the proportion of perseverative vs. optimal errors separately for each set size. 

Computational	
  modeling	
  

We simultaneously modeled the learning and testing phases based on our theory, as 

shown in Fig. 1C. The models assume that dynamically changing learned associations 

control learning phase policy, and that policies acquired at the end of the learning phase 

are used during the testing phase.  

Models	
  

We tested three families of models: 

- RLs: Pure reinforcement learning models 

- RLWM: mixture models with independent WM and RL; where both WM and RL 

contributed to learning, but only RL contributed to testing 

- RLWMi: RLWM mixture models with interacting WM and RL; where both WM 

and RL contributed to learning, but only RL contributed to testing 
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RL	
  models	
  

Computational models in the class of RL models are built off a classic formulation of RL 

models (see below), with two key parameters – learning rate α and softmax temperature 

β. We also investigate RL models that include various combinations of additional 

mechanisms that may help provide a better account of behavior, while remaining in the 

family of single process RL models. These additional mechanisms include undirected 

noise, forgetting, perseveration, initial bias, and dependence of learning rate on task 

conditions. We describe all mechanisms below.  

Classic RL. For each stimulus s, and action a, the expected reward Q(s,a) is learned as a 

function of reinforcement history. Specifically, the Q value for the selected action given 

the stimulus is updated upon observing each trial's reward outcome rt (1 for correct, 0 for 

incorrect) as a function of the prediction error between expected and observed reward at 

trial t: 

Qt+1(s,a) = Qt(s,a) + α x δt, 

where δt = rt - Qt(s,a) is the prediction error, and α is the learning rate. Choices are 

generated probabilistically with greater likelihood of selecting actions that have higher Q-

values, using the softmax choice policy, which defines the probabilistic rule for choosing 

actions in response to a stimulus: 

p(a|s)=exp(βQ(s,a))/ Σi(exp(βQ(s,ai)). 

Here, β is an inverse temperature determining the degree with which differences in Q- 

values are translated into more deterministic choice, and the sum is over the three 

possible actions ai. Choice policy during the testing phase is identical to the policy at the 

end of the learning phase.  

 

Undirected noise. The softmax allows for stochasticity in choice, but stochasticity is 

more impactful when the value of each action is close to the values of the alternative 

actions.  We also allow for “slips” of action (i.e., even when Q-value differences are 

large; also called “irreducible noise” or lapse rate). Given a model’s policy π = p(a|s), 

adding undirected noise consists in defining the new mixture choice policy: 

π’ = (1- ε) π + εU, 
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where U is the uniform random policy (U(a) = 1/nA, with number of actions nA=3), and 

the parameter 0 < ε < 1  controls the amount of noise (Collins & Frank, 2013; Collins & 

Koechlin, 2012; Guitart-Masip et al., 2012). Intuitively, this undirected noise captures a 

choice policy where with probability 1- ε the agent picks choices normally, but with 

probability ε, the agent lapses and acts randomly. (Nassar & Frank, 2016) showed that 

failing to take this irreducible noise into account can make model fits be unduly 

influenced by rare odd data points (e.g. that might arise from attentional lapses), and that 

this problem is remedied by using the hybrid softmax-ε-greedy choice function as used 

here. 

 

Forgetting. We allow for potential decay or forgetting in Q-values on each trial, 

additionally updating all Q-values at each trial, according to:  

Qt+1 ß Qt + φ (Q0-Qt), 

where 0 < φ < 1 is a decay parameter which at each trial pulls the estimates of values 

towards the initial value Q0 = 1/nA. This parameter allows us to capture forgetting during 

learning.  

 

Perseveration. To allow for potential neglect of negative, as opposed to positive 

feedback, we estimate a perseveration parameter pers such that for negative prediction 

errors (δ  < 0), the learning rate α is reduced by α = (1-pers)α. Thus, values of pers near 

1 indicate perseveration with complete neglect of negative feedback, whereas values near 

0 indicate equal learning from negative and positive feedback.  

 

Initial bias. Although we initialize the Q-values to a fixed value for all stimuli and 

actions, participants may come in with a preference for pressing action 1 with their index 

finger, for example (or other biases). To account for subjective biases in action choices 

and allow for better estimation of other parameters, we use the first choice made by a 

participant for each stimulus as a potential marker of this bias, and introduce an initial 

bias parameter init that boosts the initial value of this first, prior to the first learning 

update. Specifically, the initial bias update is Q0(s,afirst(s)) = 1/nA+init*(1-1/nA).  
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Additional mechanisms. We test two additional mechanisms to attempt to provide better 

fit within the “RL only” family of models. The first mechanism assumes that learning 

rates may be different for each set size. The second mechanism assumes that two sets of 

RL values are learned in parallel and independently, with independent learning rates: one 

process controls learning phase policy; the other controls testing phase policy only. The 

best-fitting model in the “RL only” family of models includes all mechanisms described 

above, for a total of 9 parameters (softmax β, 4 learning rates  [αlearn(3), α learn(6), αtest(3), 

αtest(6)], decay, pers, undirected noise ε, initial bias). This best model (RLs), in addition 

to the simplest RL model (for baseline), are simulated in Fig. 3 for predictions. The RL 

model predicts no effect of phase or set size on performance (top row of Fig. 3: the two 

model learning curves are overlapping); the RLs model’s predictions are dependent on 

the values of the 4 learning rate parameters, but the model is flexible enough to capture 

opposite effects of set size in learning and test phases (second row of Fig. 3). 

RL+WM	
  independent	
  models	
  

Models in the RLWM family include separate RL and WM modules, and assume that 

learning phase choice is a mixture of the RL and WM policy, while testing phase choice 

follows RL policy. 

 

The RL module of the RLWM models is a classic RL model as described above, 

characterized by parameters α and β, with the additional mechanisms of initial bias and 

perseveration. 

 

The WM module stores information about weights between stimuli and actions, W(s,a), 

which are initialized similarly to RL Q-values. To model fast storage of information, we 

assume perfect retention of the previous trial’s information, such that Wt+1(st,at) = rt. To 

model delay-sensitive aspects of working memory (where active maintenance is 

increasingly likely to fail with intervening time and other stimuli), we assume that WM 

weights decay at each trial according to Wt+1 ß Wt + φ (W0-Wt). The WM policy uses the 

W(s,a) weights in a softmax with added undirected noise, using the same noise 

parameters as the RL module. 
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Contrary to previous published versions of this model (Collins et al., 2014; Collins, 

Ciullo, et al., 2017; Collins & Frank, 2012), we cannot estimate WM capacity directly in 

this protocol, because we only sample set sizes 3 and 6. Thus, we model the limitations of 

WM involvement in choice with a fixed set-size-dependent mixture parameter ηns for the 

overall choice policy: 

Plearn(a|s) = ηnsPWM(a|s) + (1-ηns)PRL(a|s).  

For the testing phase, we assume that Ptest(a|s) = PRL(a|s). 

 

The best model in this family thus includes 8 parameters (softmax β, RL learning rate α, 

WM decay φ, pers, undirected noise ε, initial bias, two mixture parameters η3 and η6). 

This model predicts identical effects of set size in the learning and testing phases, with 

worse performance in lower set sizes (Fig. 3, third row). 

RL+WM	
  interacting	
  models	
  

This family of models is identical to the previous one, with the exception that the 

WM module influences the RL computations. The RL module update is still assumed to 

follow Qt+1(s,a) = Qt(s,a) + α x δt,. However, WM contributes cooperatively to the 

computation of the reward prediction error δt by contributing to the expectation in 

proportion to WM’s involvement in choice: 

 δt= rt – (ηns Wt(s,a) +(1-ηns) Qt(s,a)) 

The best-fitting model in this family, RLWMi, has the same parameters as the no-

interaction RL+WM models. This model predicts opposite effects of set size in the 

learning and test phases, with worse performance in lower set sizes (Fig. 3, third row). 

We tested a variant (RLWMii) that assumes independent ηns parameters for policy mixture 

and interaction mechanisms; it provided a significantly worse fit (Fig. 4). We also 

explored a competitive interaction model, whereby WM inhibited RL computations by 

decreasing learning rate. This model fit equally well as RLWMi, but cannot account for 

previous EEG findings (Collins & Frank, submitted; see discussion), thus we only report 

here the cooperative interaction. 
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Model	
  fitting	
  and	
  validation	
  

We used the Matlab constrained optimization function fmincon to fit parameters (the 

Mathworks Inc., Natick, Massachusetts, USA). This was iterated with 20 randomly 

chosen starting points, to increase the likelihood of finding a global rather than local 

optimum. All parameters were fit with constraints [0 1], except the softmax parameter β, 

which was constrained to [0 100].  

 

We used the Akaike Information Criterion to penalize model complexity (AIC; Akaike, 

1974) . Results were identical when using Bayesian Information Criterion (BIC; Schwarz 

1978), which was used to compute exceedance probability. Comparing the RL-only 

models, independent RLWM, interacting RLWMi, and double interacting RLWMii, the 

simple interacting RLWMi model was strongly favored with exceedance probability of 1-

5e-6 over the whole group (Stephan, Penny, Daunizeau, Moran, & Friston, 2009).  

 

Model selection alone is insufficient to assess whether the best fitting model sufficiently 

captures the data. To test whether models capture the key features of the behavior (e.g., 

learning curves), we simulated each model with fit parameters for each subject, with 100 

repetitions per subject then averaged to represent this subject’s contribution (Fig. 3).  

Results	
  
 
Results from the learning phase replicated previous experiments (Collins & Frank, 

2012)(Fig. 2A, 2D top). Specifically, we found that participants learned to select correct 

actions in both set sizes (Fig. 2A top), but were slower to learn in blocks with a set size of 

ns = 6. This was characterized in a logistic regression analysis which identified two main 

contributions to learning. First, reinforcement learning was characterized by a positive 

sensitivity to reward history (number of previous correct trials; sign test p < 10e-4): the 

more previous correct choices they had, the more likely participants were to pick the 

correct choice on the current trial. Second, working memory was characterized by a 

negative effect of set size and delay on performance since the last correct iteration of the 

current stimulus (both p’s < 10e-4): participants were less likely to pick the correct 
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actions under higher load, or if there had been more intervening trials since they last 

chose correctly. Furthermore, we identified a practice effect, such that performance was 

higher in later blocks (sign test, p = 0.01). These results were also paralleled in reaction 

times (Fig. 2A bottom), such that factors facilitating correct choice (reward history and 

block) also lead to faster choices (p < 10e-4 and p = 0.002, respectively), and factors 

making choice harder lead to slower choices (set size and delay; both p’s < 10e-4). At its 

asymptote, performance was lower in high than low set sizes (t(84) = 6.8, p < 0.0001; 

66/85 participants: p < 0.0001). This effect was coupled with higher reaction times (t(84) 

= 26.9, p <0.0001; 85/85 participants: p < 0.0001). 
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Figure 2: Behavioral results show opposite effect of load in learning and retention. A-top) Proportion 
of correct trials as a function of stimulus iteration number, for set sizes ns = 3/6. A-bottom) Same for 
reaction times (RT). B-top) Proportion of correct trials at asymptotic learning performance (last 5 iterations 
of a stimulus – black line) and during test phase – grey line). B-bottom) RT’s for testing and asymptotic 
learning. C) Difference between low and high set sizes shows significant, opposite results for learning and 
test phase, in both performance (top) and RT’s (bottom). D-top) Transformed logistic regression weights 
from learning phase show expected effects of learning block and reward history (due to practice and 
reinforcement learning), as well as expected negative effects of set size and delay, characterizing working 
memory contributions. D-bottom) Transformed logistic regression weights from the test phase also show 
expected effects of learning block and reward history, but show better test phase performance with higher 
set size, contrary to learning phase. Open circles represent individual subjects from original experiment; 
stars represent individual subjects from the replication sample. The results are identical. Error bars indicate 
standard error of the mean. 
 

Model simulations showed that a classic reinforcement learning model could not account 

for the learning phase effects (Fig. 3 RL), and that while more complex single process 

reinforcement learning models can capture a qualitative effect of set size with set size 

dependent learning rates, they do not quantitatively capture the learning phase dynamics 
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(Fig. 3 RLs). In contrast, we replicate our previous finding that RLWM models can 

capture learning phase dynamics well (Fig. 3 RLWM, RLWMi). 

 
Figure 3: Model Predictions. 
Model simulations with fit 
parameters. Left) Proportion of 
correct trials as a function of 
stimulus iteration number, for set 
sizes ns = 3/6. Right) Proportion of 
correct trials at asymptotic learning 
performance (last 5 iterations of a 
stimulus – black line) and during test 
phase – grey line). Simulations were 
run with best fit parameters, 100 
times per subject. Models are RL 
(classic two-parameter RL), RLs 
(best model in the RL family, 
including two independent Q-tables 
for learning and testing, and 2 
learning rates per set size per 
learning process), RLWM (with 
independent working memory and 
reinforcement learning modules), 
and RWMi (with interacting 
modules). Dotted lines show 
participants’ behavior; full lines 
model simulations.  Note that the 
simulated learning curves for the RL 
model overlap, showing no effect of 
set-size. 
 
 

 

 

 

 

We next analyzed testing phase performance as a function of the set size in which an item 

had been learned. As expected from our hypothesis that learning relies on RL and WM, 

but testing on RL only, we found overall worse performance (t(84)=10.5, p<10e-4) in the 

testing phase compared to asymptotic performance in the learning phase, as well as faster 

reaction times (t(84)=21.1, p<10e-4). Furthermore, our theory assumes that learning in 

high set size blocks relies more on RL than in low set size blocks, and that testing phase 

relies only on RL. Thus, we predicted that individual differences in testing phase 

behavior should be better predicted by individual differences in asymptotic learning 
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phase performance in high than low set size blocks, and that this should be true for 

stimuli learned in either set size. Unsurprisingly, a multiple regression analysis with both 

asymptotic set size 3 and 6 learning phase performance showed that set size 6, but not set 

size 3, was significantly predictive of set size 6 test performance (t(84) = 5.06, p < 10e-4 

for ns = 6; t(84) = 1.8, p > .05 for ns = 3). Surprisingly, but confirming our prediction, we 

also found that set size 3 testing phase performance was predicted by set size 6, but not 

set size 3 asymptotic learning phase performance (t(84) = 4.5, p = 0.0000 for ns = 6; t(84) 

= -0.02; p = 0.98 for ns = 3). These results support our hypothesis that testing phase 

performance relies on RL, which is more expressed during learning of set size 6 than 3. 

 

Next, we investigated testing phase performance as a function of set size of the block 

during which the stimulus was learned. It is important to remember that if testing phase 

performance reflected the history of choices and rewards during learning, participants 

should be better able to select correct actions for stimuli in low set sizes rather than in 

high set sizes (following their asymptotic learning performance). Instead, we found that 

participants were significantly better at selecting the appropriate action for items they 

learned in high set sizes (Fig. 2B t(84) = 3.8, p = 0.0003; 58/85 participants: sign test p = 

0.001), indicating a counterintuitive robustness of learning under high load. This was also 

visible in reaction times, which were faster for items learned under high load (Fig. 2B 

t(84) = 3.5, p = 0.0008; 57/85 participants: p = 0.002).  

 

We confirmed these results with multiple regression analyses, using learning block, 

learning set size, and asymptotic average rewards as predictors. Results showed that 

learning block and reward history accounted for significant variance in testing phase 

performance and RTs (Fig. 2D; sign tests p’s < 10e-4), with effects in the same direction 

as learning phase performance and RTs, reflecting variance in the learning process. 

However, set size predicted variance in the testing phase in the opposite direction from in 

the learning phase (Fig. 2D; better choices, p < 10e-4, faster RTs, p = 2.10e-4). Together, 

these results confirm our prediction that despite apparent successful learning in low set 

sizes, stimulus-action associations were formed in a way that was stronger in high set 

sizes, as observed in testing phase performance. 
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Next, we sought to confirm that these effects were not due to differences in reward 

history. First, we limited testing phase analysis to items where the participant chose 

correctly for all last 6 iterations (thus reaching 100% asymptotic performance in both set 

sizes). Within this subset, we again observed better test performance in high set size 

stimuli, with a stronger effect (p < 10-4, t(84) = 7.6). Second, we asked whether higher 

performance in set size 6 might be accounted for by participants better avoiding choices 

that were unrewarded during learning, which would have been experienced more in set 

size 6 than set size 3. However, we found that the types of errors made by participants in 

both set sizes were not different (t(84) = 0.01,p = 0.99), and significantly suboptimal 

(one-sample t-test vs. chance both t’s > 12, proportion of optimal error trials 27%; see 

methods). Thus superior performance in high set sizes was not due to a better avoidance 

of incorrect actions due to higher sampling of errors during learning. Indeed, RLWM 

models with no interaction between RL and WM predicted the opposite effect of set size 

in the testing phase (Fig. 3 RLWM). 
Figure 4: Model 
fitting. Left: Difference 
in AIC between 
different models and 
best model RLWMi. 
The RLs model is a 
flexible model including 
only RL mechanisms; 
the RLWM model 
includes an RL module 
and a working memory 
module that are 

independent, but compete for choice. RLWMi additionally includes an interaction, whereby WM 
contributes to RL computations. RLWMii allows separate weighting for WM’s contribution to choice and 
to RL computations. Error bars indicate standard error of the mean. Right: Mixture weights η indicate 
contribution of WM to choice and RL computations in both set sizes for all subjects (initial experiment: 
open circles; replication: stars). As expected under the hypothesis that the WM module represents working 
memory, we observe consistently lower contribution of WM in high than in low set sizes (η6 < η3).   
 
Instead, we hypothesized that the reversal in the effect of set size on performance 

between learning and testing was indicative of WM interfering with RL computations 

during learning. Specifically, we hypothesized that in low set size blocks, which were 

putatively within working memory capacity, the ability to solve the learning problem 

with WM would lead to interference with RL computations. We propose a mechanism 

whereby WM is able not only to store stimulus action associations, but also to predict a 
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correct outcome when this association is used. This prediction is used cooperatively in a 

mixture with the RL expectation to compute reward prediction error (Fig.1C); and thus 

when WM is ahead of RL, it decreases positive reward prediction errors, and effectively 

impedes learning in the RL process (Collins & Frank, submitted). This would then lead to 

less well-learned associations in low compared to high set sizes. We characterized the 

contributions of WM and RL to choice and to the reward prediction error with a single 

mixture parameter for each set size, ηns (see methods for full model description). If this 

mixture parameter represents contributions of capacity-limited WM, we should observe 

η6<η3. This is indeed what we observed with parameters fit on individual subjects’ 

choices (Fig. 4 right). 

 

We tested this model (RLWMi) against three other main models (as described in the 

methods). The first alternative (RLs) assumed only RL processes, and was made flexible 

enough to be able to reproduce all qualitative effects observed empirically. This required 

assuming that two independent sets of association weights were learned in parallel, one 

used during learning and the other during testing; and that learning rates were different 

for both, as well as for different set sizes. The second alternative model (RLWM) was 

similar to the main model (RLWMi), but without the interaction for learning. The last 

alternative model (RLWMii), was identical to RLWMi, but offered flexibility in 

separately parameterizing the contribution of WM to choice and to learning. We fitted 

participants’ behavior with the three models, and found that RLWMi fit significantly 

better than the other three models (exceedance probability = 1). Model simulations (Fig. 

3) confirmed that RLWMi provided the best qualitative and quantitative account of the 

data. These results confirm that working memory is needed to account for learning 

behavior, and that an interference with RL is the best way to account for counterintuitive 

testing phase effects. It is important to note that letting the contributions of WM to choice 

and to RL be independent does not capture additional variance in behavior, hinting that 

these two functions might share a single, coupled mechanism. 
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Figure 5: RLWMi 
validation. Model 
simulations with fit 
parameters. A): Model 
simulations reproduce 
learning curves. B-C): 
Model simulations 
reproduce the opposite 
effects of set size ns 
between learning and 
testing phases, for both 
choices and reaction 
times. D-E): Logistic 
regression analysis of 
the learning and 
testing phase choices 
capture behavioral 
effects (Fig. 2), 
including the opposite 
effects of set size on 
performance. 

 

To validate the RLWMi model, we simulated it with individual participants’ fit 

parameters (100 times per participant). Simulations provided a good qualitative and 

quantitative fit to the choice results in both learning and testing phase. Specifically, the 

simulations produced learning curves that were very close to participants’ (Fig. 5A), and 

reproduced the opposite set size effects in asymptotic learning phase and testing phase 

(Fig. 5B, D, E). We did not capture the practice effect (block; Fig. 5D, E). We also 

simulated reaction times by assuming a negative linear dependence on the model-

determined probability of the choice, such that faster reaction times occurred for choices 

with higher confidence. Using these simulated reaction times, we reproduced the 

observed pattern whereby reaction times are faster for low set sizes than high set sizes 

during learning, but the opposite is true for the testing phase (Fig. 5C). This is because 

during learning, the WM contribution to choice leads to more confidence in the choices 

and faster RTs; but the higher WM interference during learning leads to less well-learned 

Q-values for low set sizes, which translates to slower RTs during testing. It is important 

to note that the model was fit only to the choices, not RTs, so this is an independent test 

of the model’s ability to capture empirical data. 
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Discussion	
  
 
Our new experimental protocol allows us to demonstrate a surprising finding: 

associations learned in a more complex problem end up being learned more robustly, and 

are better retained in the long-term, than easy to learn associations. This finding provides 

behavioral evidence for an interaction between working memory and reinforcement 

learning. Specifically, we showed previously that RL and WM compete for choice during 

learning (Collins et al., 2014; Collins & Frank, 2012). Here, we show an additional 

interaction between them whereby working memory impedes RL computations. These 

new results behaviorally and computationally support our previous observations that WM 

and RL are not independent modules, but that RL neural signals are weakened by WM 

use (Collins, Albrecht, et al., 2017; Collins, Ciullo, et al., 2017)(Collins & Frank, 

submitted). It also strengthens our previous result showing that stimulus value was better 

learned in high set sizes (Collins, Albrecht, et al., 2017), but offers a more robust 

computational account for this finding. 

 

Working memory and reinforcement learning implement different trade-offs for learning: 

WM allows for very fast learning of information that is not durably retained, while RL 

allows for slow, integrative learning of associations that are robustly stored. Previous 

models assumed that humans can benefit from the best of both worlds by shifting the 

weight given to each system as a function of their reliability (Collins et al., 2014; Collins, 

Ciullo, et al., 2017; Collins & Frank, 2012). Specifically, assuming that the effortless RL 

process simply occurs independently in the background, we can use WM to the maximum 

of its reliability for learning, and use RL first as a back-up, but as it becomes more 

reliable than WM, shift to “automatized” RL behavior only. The results presented here 

show instead that the trade-off cannot be completely eliminated by carefully arbitrating 

between RL and WM during learning: the use of WM in easy problems weakens RL 

learning, and thus leads to faster learning at the cost of long-term retention.  

 

We proposed a computational mechanism by which working memory may impede RL 

learning. Despite its negative effect on long-term learning, this mechanism can be 
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thought of as cooperative. Indeed, we suggest that when an association is held in working 

memory, working memory can also contribute to corresponding reward expectations. Our 

computational mechanism assumes that WM’s expectation is weighted with RL’s 

expected value, and that this mixture expectation is then used to compute RL’s reward 

prediction error. Thus, when WM is reliable and learns faster than RL, this mechanism 

generates lower reward prediction errors in correct trials than an independent RL 

mechanism would, which in turn leads to a weaker update of associations in the RL 

system. This mechanism is compatible with our observations in an EEG experiment, 

where trial-by-trial neural markers of working memory use predicted lower markers of 

reward prediction errors (Collins & Frank, under review). 

 

We showed that this cooperative interaction accounted for trial-by-trial choices during 

learning and testing better than models assuming no interactions. However, other 

interaction mechanisms could also be considered – in particular, a competitive 

mechanism provides a similar fit to participants’ choices (Collins & Frank, submitted). 

This mechanism simply assumes that the RL learning rate is decreased, in proportion to 

WM contributions to choice. This leads to slower RL learning, not due to weakened 

reward prediction errors as in the cooperative mechanism, but due to a weaker effect of 

reward prediction learning on updates. Competition and cooperation mechanisms make 

separable predictions for neural signals: the competition mechanism predicts that RPEs 

will decrease slower in low set sizes due to the slow learning rate, while the cooperation 

mechanism predicts that they will decrease faster in low set sizes, due to accurate WM 

predictions. EEG results confirmed the latter prediction (Collins & Frank, submitted), 

thus supporting the cooperation mechanism prediction. However, it will be important in 

future work to show behavioral evidence disambiguating the two mechanisms.  

  

This leaves opens an important question – are there situations in which a cooperative 

mechanism might be beneficial? In our experimental protocol, it seems suboptimal, as it 

leads to weakened learning in the long-term. RL algorithms are only guaranteed to 

converge to true estimates of expected value if the reward prediction error is not 

tampered with; interference may bias, or slow computations, as is seen here. It is thus 
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puzzling that we might have evolved an interaction mechanism that actively weakens one 

of our most robust learning systems. Future research will need to determine whether this 

bias might be normative in more natural environments – for example, it is possible that 

situations in which learning is required to be very fast are also volatile environments, 

where we might need to change our behavior quickly. In that case, not having built as 

strong an association might allow for more flexible behavior. Another hypothesis is that 

this interaction reflects constraints of neural network implementations, and is thus a side-

effect of another normative mechanism: specifically, that the contribution of working 

memory to choice, which helps learn faster in low set sizes, is not separable from its 

contributions to the reward expectation (Fig. 1C). While we do not have direct evidence 

for this hypothesis, our model fitting results provide a clue in its favor: a more flexible 

model that allowed contributions of WM to choice and RL to be uncoupled did not 

provide a better fit, and the additional degrees of freedom led to overfitting. Thus, no 

additional variance was captured by letting choice and learning interactions be separable, 

pointing to the possibility that they are indeed coupled mechanisms. Future research will 

need to clarify this.   

 

We focused on how two neuro-cognitive systems, working memory and reinforcement 

learning, worked together for learning, highlighting the effects of their interactions in a 

testing phase where only reinforcement learning was used. However, it is likely that one 

other system – long term memory – contributes to testing performance, and potentially 

also to learning (Bornstein, Khaw, Shohamy, & Daw, 2017; Bornstein & Norman, 2017). 

Indeed, others have shown that long-term memory encoding may compete for resources 

with reinforcement learning processes (R. A. Poldrack & Packard, 2003; Wimmer, 

Braun, Daw, & Shohamy, 2014), and other interactions may be possible (for a review, 

see (Gershman & Daw, 2017)). Here, we observed in the testing phase that participants 

performed better for associations learned closer to the testing phase, an effect reminiscent 

of the well-documented recency effect in long term memory recall (Sederberg, Howard, 

& Kahana, 2008). Our model currently does not capture this effect, or other potential 

contributions of long term memory. While including it is beyond the scope of this work, 
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it will be important in future research to investigate how this third mechanism interacts 

with RL and WM for learning. 

 

In summary, our results show a counter-intuitive but robust (and replicable) finding – that 

while learning under high load is slower and more effortful, it actually allows for better 

long-term learning and retention. This appears to be due to the fact that faster learning 

under low load cuts the corner with working memory, and by doing so undermines more 

robust encoding of associations via reinforcement learning. Our findings highlight 

complex interactions between multiple learning systems not only at the level of decisions, 

but also at the level of learning computations. When learners arbitrate in favor of fast and 

efficient working memory use over RL in simple situations, they simultaneously 

undermine the computations from this slower but more robust system, leading to worse 

long-term performance. This result may have important implication in numerous 

domains, as learning is an important part of our daily lives – for example in educational 

settings. Understanding how multiple systems work together for learning is also a crucial 

step to   identifying the causes of learning dysfunction in many clinical populations, and 

thus better targeting treatments. 

Acknowledgements	
  
I thank Nora Harhen and Sarah Master for data collection. 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/234724doi: bioRxiv preprint first posted online Dec. 15, 2017; 

http://dx.doi.org/10.1101/234724
http://creativecommons.org/licenses/by-nc/4.0/


 

Bibliography	
  
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions 

on Automatic Control, 19(6), 716–723. http://doi.org/10.1109/TAC.1974.1100705 

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual 

Review of Psychology, 63, 1–29. http://doi.org/10.1146/annurev-psych-120710-

100422 

Bornstein, A. M., Khaw, M. W., Shohamy, D., & Daw, N. D. (2017). Reminders of past 

choices bias decisions for reward in humans. Nature Communications, 8(May), 1–9. 

http://doi.org/10.1038/ncomms15958 

Bornstein, A. M., & Norman, K. A. (2017). Reinstated episodic context guides sampling-

based decisions for reward. Nature Neuroscience, 20(7), 997–1003. 

http://doi.org/10.1038/nn.4573 

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multi-Model Inference: 

A Practical Information-Theoretic Approach (Google eBook). Springer. Retrieved 

from http://www.citeulike.org/group/7954/article/4425594 

Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017). 

Interactions Among Working Memory , Reinforcement Learning , and Effort in 

Value-Based Choice : A New Paradigm and Selective De fi cits in Schizophrenia. 

Biological Psychiatry, 82(6), 431–439. 

http://doi.org/10.1016/j.biopsych.2017.05.017 

Collins, A. G. E., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working 

memory contributions to reinforcement learning impairments in schizophrenia. 

Journal of Neuroscience, 34(41), 13747–13756. 

http://doi.org/10.1523/JNEUROSCI.0989-14.2014 

Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load 

strengthens reward prediction errors. The Journal of Neuroscience, 37(16), 2700–16. 

http://doi.org/10.1523/JNEUROSCI.2700-16.2017 

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is working 

memory, not reinforcement learning? A behavioral, computational, and neurogenetic 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/234724doi: bioRxiv preprint first posted online Dec. 15, 2017; 

http://dx.doi.org/10.1101/234724
http://creativecommons.org/licenses/by-nc/4.0/


analysis. The European Journal of Neuroscience, 35(7), 1024–35. 

http://doi.org/10.1111/j.1460-9568.2011.07980.x 

Collins, A. G. E., & Frank, M. J. (2017). Within and across-trial dynamics of human 

EEG reveal cooperative interplay between reinforcement learning and working 

memory. Doi.org, 184812. http://doi.org/10.1101/184812 

Collins, A. G. E., & Frank, M. J. M. J. (2013). Cognitive control over learning: Creating, 

clustering, and generalizing task-set structure. Psychological Review, 120(1), 190–

229. http://doi.org/10.1037/a0030852 

Collins, A. G. E., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal 

lobe function and human decision-making. PLoS Biology, 10(3), e1001293. 

http://doi.org/10.1371/journal.pbio.1001293 

Cools, R. (2011). Dopaminergic control of the striatum for high-level cognition. Current 

Opinion in Neurobiology, 21(3), 402–7. http://doi.org/10.1016/j.conb.2011.04.002 

Cowan, N. (2010). The Magical Mystery Four: How is Working Memory Capacity 

Limited, and Why? Current Directions in Psychological Science : A Journal of the 

American Psychological Society, 19(1), 51–57. 

http://doi.org/10.1177/0963721409359277 

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-

based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 

1204–15. http://doi.org/10.1016/j.neuron.2011.02.027 

Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. 

Cognitive, Affective & Behavioral Neuroscience, 8(4), 429–53. 

http://doi.org/10.3758/CABN.8.4.429 

Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine 

function in human cognition: psychopharmacological studies with cabergoline and 

haloperidol. Behavioral Neuroscience, 120(3), 497–517. 

http://doi.org/10.1037/0735-7044.120.3.497 

Gershman, S. J., & Daw, N. D. (2017). Reinforcement Learning and Episodic Memory in 

Humans and Animals: An Integrative Framework. Annual Review of Psychology, 

68(1), 101–128. http://doi.org/10.1146/annurev-psych-122414-033625 

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/234724doi: bioRxiv preprint first posted online Dec. 15, 2017; 

http://dx.doi.org/10.1101/234724
http://creativecommons.org/licenses/by-nc/4.0/


(2012). Go and no-go learning in reward and punishment: interactions between 

affect and effect. NeuroImage, 62(1), 154–66. 

http://doi.org/10.1016/j.neuroimage.2012.04.024 

Miller, E., & Cohen, J. (2001). An Integrative Theory Of Prefrontal Cortex. Annual 

Review of Neuroscience, 167–202. Retrieved from 

http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.24.1.167 

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic 

dopamine systems based on predictive Hebbian learning. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 16(5), 1936–

47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8774460 

Nassar, M. R., & Frank, M. J. (2016). Taming the beast: Extracting generalizable 

knowledge from computational models of cognition. Current Opinion in Behavioral 

Sciences, 11, 49–54. http://doi.org/10.1016/j.cobeha.2016.04.003 

Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory 

systems: converging evidence from animal and human brain studies. 

Neuropsychologia, 41(3), 245–251. http://doi.org/10.1016/S0028-3932(02)00157-4 

Poldrack, R. a, Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., 

… Gluck, M. a. (2001). Interactive memory systems in the human brain. Nature, 

414(November), 546–550. http://doi.org/10.1038/35107080 

Schultz, W. (2013). Updating dopamine reward signals. Current Opinion in 

Neurobiology, 23(2), 229–38. http://doi.org/10.1016/j.conb.2012.11.012 

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 

461–464. Retrieved from http://projecteuclid.org/euclid.aos/1176344136 

Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of 

recency and contiguity in free recall. Psychological Review, 115(4), 893–912. 

http://doi.org/10.1037/a0013396 

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). 

Bayesian model selection for group studies. NeuroImage, 46(4), 1004–17. 

http://doi.org/10.1016/j.neuroimage.2009.03.025 

Tai, L.-H., Lee,  a M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient 

stimulation of distinct subpopulations of striatal neurons mimics changes in action 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/234724doi: bioRxiv preprint first posted online Dec. 15, 2017; 

http://dx.doi.org/10.1101/234724
http://creativecommons.org/licenses/by-nc/4.0/


value. Nature Neuroscience, 15(9), 1281–9. http://doi.org/10.1038/nn.3188 

Wimmer, G. E., Braun, E. K., Daw, N. D., & Shohamy, D. (2014). Episodic Memory 

Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors. 

Journal of Neuroscience, 34(45), 14901–14912. 

http://doi.org/10.1523/JNEUROSCI.0204-14.2014 

 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/234724doi: bioRxiv preprint first posted online Dec. 15, 2017; 

http://dx.doi.org/10.1101/234724
http://creativecommons.org/licenses/by-nc/4.0/

