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A key aspect of human intelligence is our ability to learn very

quickly. This ability is still lacking in artificial intelligence. This

article will highlight recent research showing how bringing

together the fields of artificial intelligence and cognitive science

may benefit both. Ideas from artificial intelligence have

provided helpful formal theories to account for aspects of

human learning. In return, ideas from cognitive science and

neuroscience can also inform artificial intelligence research

with directions to make algorithms more human-like. For

example, recent work shows that human learning can only be

understood in the context of multiple separate, interacting

memory systems, rather than as a single, complex learner. This

insight is starting to show promise in improving artificial agents’

learning efficiency.
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From the birth of the field of cognitive science, the

study of machine and human intelligence have been

tightly linked. Indeed, many scientists believe that they

can only convincingly claim to have understood a process

when they can reproduce it. Thus, creating a machine

with human intelligence is the ultimate test of our under-

standing of human cognition. A current frontier in both

human and artificial intelligence research is in the domain

of learning. Human intelligence is characterized by an

ability to learn and adapt efficiently to new environments.

However, despite remarkable progress in the last 10 years,

this ability is still lacking in most artificial intelligence

(AI) agents. Here I will argue that this gap only partially

reflects our weak understanding of how humans perform

this feat, and that more cross-fertilization between
www.sciencedirect.com 
cognitive and AI research could help bridge the gap. I

will first show how input from AI has been useful for the

cognitive science of learning, then argue that AI could

benefit from greater input from cognitive science, and

finally I will highlight specific domains where this is

currently possible.

In many ways, the study of the human mind and brain is at

the root of the field of AI. First, the very definition of

intelligence relies on our intuition that humans have cog-

nitive capacities qualitatively beyond those of non-human

animals. The field of AI attempts to mimic or surpass these

abilities, which include many independent aspects, such as

language and reasoning (which were some of the early

targets of AI), but also learning and autonomous deci-

sion-making in complex, changing environments. In addi-

tion to providing AI with benchmark for Intelligence, the

study of the human mind and brain also inspired some early

attempts at artificial intelligence, with the field of neural

networks (‘connectionism’) directly modeled from our

understanding of neurons and their information coding

properties.

However, the field of AI also largely developed its own

goals, methods, and results, without reference to the

parallel development of cognitive science. This indepen-

dent progress has proven extremely beneficial to the

understanding of human intelligence in general, and

human learning in particular, exemplified by AI algo-

rithms that could model aspects of animal behavior.

How AI supports cognitive research
The field of reinforcement learning is often highlighted

as an archetype of the success of theoretical approaches to

cognitive science. Computational processes designed by

mathematicians to have theoretical guarantees, are

imported to model how animals modify their behavior

when experiencing rewarding or aversive outcomes.

Reinforcement learning (RL) algorithms are a class of

algorithms that have a narrow definition: they attempt to

maximize a specific cost function, the discounted sum of

future expected reward [1]. Such a function would clearly

be important for animal survival, and as such, researchers

hypothesized that such RL algorithms might be imple-

mented in the brain. Indeed, some simple RL algorithms

were found to be related to learning behaviors character-

ized as the ‘law of effect’, and summarized mathemati-

cally into a ‘Delta-rule’ in early cognitive models of

Pavlovian conditioning [2], where better than expected

outcomes lead animals (including humans) to increase the
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strength of an association between a predictor and an

outcome. A family of simple RL algorithms called

‘model-free RL’, such as Q-learning [3], have been very

successful to explain learning in simple or stimulus-action

learning in humans and animals [4].

RL algorithms have been so successful in cognitive

neuroscience because they not only capture behavior,

but also provide a quantitative theory for the underlying

neural processes. Indeed, information carried by the

neuromodulator dopamine can be modeled as a reward

prediction error signal consistent with the RL framework

of temporal difference learning [1,5]. The striatum, where

dopamine modulates plasticity [6], encodes the choice

value or policy [7,8]; it has even been suggested that

distinct parts of the striatum may have distinct roles, as

proposed by an RL actor-critic model [9]. In short, there is

broad agreement that a striatal-dopaminergic system

implements a form of model-free RL in the brain.

This theory has been refined since to better account for

human learning, often taking inspiration from AI. For

example, model-based RL algorithms [10], Dyna-RL

offline replay [11], and successor representations [12]

account for aspects of planning in human learning

[13�]. Other models that capture more advanced aspects

of human learning include hierarchical RL [14], PID

controllers [15], and so on. In short, the influence of

RL algorithms from AI remains essential and fruitful in

understanding human learning and intelligence.

How cognitive science can support AI
research
The reverse seems to be less true: The tremendous

progress in cognitive science and neuroscience has only

weakly influenced AI research in RL, despite the fact that

RL itself was strongly inspired by research in animal

conditioning [16]. Nevertheless, here are multiple ways

in which research on human cognition can inform AI.

First, it can provide tools for analyzing and thus improving

agents’ behavior. More importantly, it can provide inspi-

ration for better algorithms by showing how humans

perform tasks that artificial agents fail at. Indeed, hun-

dreds of millions of years of evolution have sculpted

highly complex, efficient, and effective nervous systems

in the animal kingdom, and research on human behavior

in particular reveals powerful natural learning algorithms.

I will show examples of successful integration of knowl-

edge from the cognitive sciences into AI, and suggest

some directions where cognitive research is ahead of AI.

Tools
An important frontier in creating artificial agents is in fast

learning, which in humans relies on the ability to transfer

previous knowledge to new environments or problems.

Despite recent progress in AI, humans still have a strong

advantage in this domain, and most AI studies include
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human performance as a benchmark [17,18��]. This per-

formance benchmark is often a rough aggregate measure

of how well the agent is doing, for example, the number of

points earned in a game. Cognitive scientists have already

developed and can provide tools to make this more

informative: First, they can provide more reliable bench-

marks, by establishing a range of target performance

across multiple human players, carefully controlling

experimental factors (Tsividis et al., unpublished). More

importantly, analyzing fine-grained patterns of behavior,

rather than aggregate measures, is an essential tool for

cognitive scientists trying to deconstruct the algorithms

that drive learning [19,20]. Such methods would also be

informative to dissect artificial agents’ behavior [21]. We

could then better identify where specifically they fail to

match human performance, and thus inform their

improvement.

Inspiration
A more fundamental way, in which cognitive science can

inform AI research, is by inspiring improved algorithms

[22��]. Again, there is an evolutionary argument here:

learning efficiently and adapting flexibly to changing

environments is essential for animals’ fitness and survival

through evolution; as such, it is likely (though not certain)

that the algorithms implemented by the brain for learning

and decision-making are fine-tuned to support efficient

learning. A strategy for improving AI in domains in which

it currently lags behind human levels, such as fast learning

and generalization, is to take what we understand from

human cognition in that domain and apply it to artificial

agents. In the next paragraphs, I will give examples where

this has been done, and examples where this could be

done more.

Multiple learning systems in parallel
Early improvements of AI algorithms for learning, such as

deep reinforcement learning networks (e.g. DQN [17])

were successful, to a first approximation, by creating

elaborate state spaces over which simple RL algorithms

could operate using function approximation. However, a

key insight from human cognitive neuroscience is that

human learning can never be approximated by a single

learning system, no matter how clever. Instead, at any

time point, multiple learning, memory, and decision

processes contribute to learning and choices in parallel,

and sometimes interact with one another.

One example is episodic memory. In addition to the well-

studied neural RL system, humans, use hippocampus-

dependent memory to store, and recall when relevant,

unique, precise events. Recent research has shown that

the episodic memory system contributes essentially to

learning [23,24,25��,26,27], in parallel with RL. This

finding has inspired new AI agents. Recent research

targeted such one-shot learning (putatively dependent

on episodic memory) and developed deep-RL agents that
www.sciencedirect.com
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were augmented with an ability to use external memory

for fast learning [28]. These agents were able to perform

one-shot imitation learning, taking them a step closer to

human learning abilities [29,30].

Another cognitive process that crucially contributes to

human learning is working memory, a process by which we

actively hold in mind a limited amount of information for

a short amount of time. Evidence for short-term mainte-

nance of information, and sensitivity to information load,

show that much of human learning is more dependent on

working memory (WM) than RL [31–33]. Furthermore,

recent work shows that the use of WM in learning inter-

feres with computations performed by the RL process.

Specifically, model-free RL algorithms are usually

assumed to be closed-loop: they use their own predictions

to estimate reward prediction errors and learn from them.

Instead, recent work hints at more dependency between

different systems, whereby WM provides inputs to RL

computations [11,34,35�,36��].

The understanding of the role of WM in human learning

has not inspired AI research yet, to our knowledge.

Recurrent networks such as LSTMs [37] bear some

resemblance to WM in that they keep a trace of past

information in the network’s state. However, this is a

superficial resemblance: crucial characteristics of WM,

both positive ones, such as the ability to manipulate

information in WM, and apparently negative ones, such

as the very limited amount of information it can hold, are

not present [28]; these artificial agents instead have

episodic-memory-like long-lasting, high-capacity mem-

ory stores. We should again assume that WM’s character-

istics may have an evolutionary purpose, and thus might

improve artificial agents. A possibility is that WM’s lim-

ited information capacity focuses attention and learning

to a manageable, low-dimensional, prioritized state space

[38]. Similarly, interactions between memory systems

such as WM and RL may have beneficial computational

properties that could improve AI agents. This type of

interactions between memory systems is currently being

explored for episodic memory and RL [39].

Executive functions provide structure for
learning
Humans, as well as non-human primates and other

animals, can learn to learn [40]. This ability is dependent

on prefrontal cortex [41], and holds potential for

improvement of artificial agents: recent work showed

that when an agent is trained on families of problems

that share the same structure, it can learn how to learn in

these types of situations and become more and more

efficient over time [42��,43].

An important way, in which humans learn to learn effi-

ciently, is by integrating prior knowledge with new infor-

mation [44,45]. Making intelligent agents will probably
www.sciencedirect.com 
require an ability to integrate such priors into their

computations, an area of active research [18��]. This

ability manifests itself in humans by their tendency to

search for structure in their interaction with the environ-

ment [46–49]. Humans even create structured represen-

tations that do not reflect objective structure in the

environment (and thus provides no behavioral benefit),

at a cost to their immediate performance [50–52]. This

apparently suboptimal strategy is present not only in

human adults, who may have extensive prior evidence

that this is a useful long-term strategy, but also in human

infants [53,54], highlighting an essential ingredient to the

development of human intelligence.

One computational benefit of structure building in

humans is that it provides representations for learned

policies that are not strongly tied to a specific set of

sensory inputs and motor outputs. Instead, from the start,

policies are created to be broadly generalizable and

transferable: A key behavioral marker of such structure

learning in humans is the ability to later transfer and

generalize learned knowledge and policies to new envir-

onments [55]. We learn how to behave appropriately in

different contexts, reacting to the same cues differently:

for example, we react to a colleague’s statements or our

phone ringing differently in an office during an interview

and in a bar after a conference. Having learned these

context-dependent policies, we can immediately reuse

them in a different context (new office, different confer-

ence), or with different low-level choices (greeting some-

one in French or English, turning off a different phone).

The ability to create reusable policies is related to the

notion of ‘state abstraction for lifelong RL’ in AI [56].

However, it is unclear whether this research allows artifi-

cial agents to incur short-term costs for explicitly building

more complex than necessary representations, in the hope

that those will prove their worth in future interactions

with new environments. The structure of human brain

networks actively promotes structure creation [57], mak-

ing us short-term suboptimal for increased long-term

fitness and flexibility.

How neuroscience can inform AI research
This last point highlights the fact that inspiration for AI

can be found not only by investigating human behavior,

but also by understanding how the brain implements it.

This benefit could come in one of two ways, often tightly

intertwined. First, we investigate the ‘hardware’, and ask

how brain networks that support a specific behavior are

organized, assuming that evolutionary pressure may have

constrained these processes to compress information effi-

ciently. This approach has been successful in the domain

of artificial vision for example, where convolutional net-

works were inspired by neuroscience [58�]. Second, we

can investigate the ‘software’: how information related to

a cognitive process is encoded.
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As an example of learning about the brain’s ‘software’, we

can look at dopaminergic signals that encode reward

prediction errors in the brain, which support policy learn-

ing. Finding non-reward related information that

contributes to dopaminergic signals (such as novelty,

uncertainty, or information [59]) suggests that this infor-

mation is usefully integrated into a policy learning in

humans, and thus potentially also for artificial agents.

Similarly, recent findings about hippocampal replay, pre-

play, and mental simulation [60,61�], could inform how

Dyna-like off-line learning [10] occurs and is prioritized

in animals, and thus might inspire AI.

Regarding ‘hardware’, the organization of brain networks

could also inspire how to structure artificial networks to

support flexible learning. For example, the brain uses two

separate but converging pathways for RL, coding highly

anticorrelated information (a ‘positive’ policy: how much

to approach a choice; and a ‘negative’ policy; how much to

avoid a choice). Such redundancy is surprising in a bio-

logical system. Thus, it may instead reflect an adaptive

role for flexible behavior, such as providing a method to

flexibly adjust whether to prioritize costs versus benefits

in decisions [62]. As another example, the brain networks

that support RL computations exist in multiple parallel

loops, originating in cortical regions that represent more

or less abstract information [63–65]. This structure might

indicate the usefulness of performing RL computations

on multiple state/action spaces in parallel at different

granularities of generalizability, with largely indepen-

dent, but hierarchical dependencies [50].

Discussion
It is important to keep in mind that the human and

artificial intelligence communities have different goals,

and that what works in silico is not guaranteed to work in
vivo, and vice-versa. There may be risks in trying to match

too closely human and artificial intelligence. First, AI

agents have different memory mechanisms and resources

than animals, which could mean that algorithms designed

to work within animal constraints might not be optimal for

AI agents. In reverse, AI research may produce elegant

and efficient frameworks that do not necessarily have to

relate to human learning. Seeking to take a mechanism

that is relevant for artificial agents and using it as a lens for

investigating human learning might be productive, but

also misleading, by artificially enforcing an interpretation

that might not correspond to computations in brain and

behavior. Both communities should remain aware of

these drawbacks.

Nevertheless, here I have shown that research in human

and artificial learning could benefit from more cross-talk

between the two disciplines. Research in other domains,

especially sensory processing, has already shown such

bidirectional benefits by inspiring network structures

(e.g. convolutional networks), and by helping model
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neural processing [58�]. The same process could be

strengthened for the field of learning and decision mak-

ing. To this end, researchers in AI might take inspiration

from cognitive scientists’ knowledge of human brain and

behavior, and try to integrate it into better agents. For

example, network structures could be informed by knowl-

edge from brain connectivity. Algorithms could be con-

strained with knowledge about human learning, such as

the existence of multiple parallel, interacting memory

and decision-making processes. Researchers in human

intelligence should also take inspiration from algorithms

that improve artificial agents, and consider testing

whether they might account for some aspects of human

learning. This requires designing experiments that take

into account the complexities of real-world learning, and

thus probing intelligent learning more directly.
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