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Humans use prior knowledge to efficiently solve novel tasks, but how they structure past knowledge during
learning to enable such fast generalization is not well understood.We recently proposed that hierarchical state
abstraction enabled generalization of simple one-step rules, by inferring context clusters for each rule.
However, humans’ daily tasks are often temporally extended, and necessitate more complex multi-step,
hierarchically structured strategies. The options framework in hierarchical reinforcement learning provides a
theoretical framework for representing such transferable strategies. Options are abstract multi-step policies,
assembled from simpler one-step actions or other options, that can represent meaningful reusable strategies as
temporal abstractions. We developed a novel sequential decision-making protocol to test if humans learn and
transfer multi-step options. In a series of four experiments, we found transfer effects at multiple hierarchical
levels of abstraction that could not be explained by flat reinforcement learning models or hierarchical models
lacking temporal abstractions. We extended the options framework to develop a quantitative model that
blends temporal and state abstractions. Our model captures the transfer effects observed in human
participants. Our results provide evidence that humans create and compose hierarchical options, and use
them to explore in novel contexts, consequently transferring past knowledge and speeding up learning.
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Reinforcement learning theory (RL; Sutton & Barto, 2018) offers
a computational level account of how agents can learn to make
choices that will maximize their future cumulative rewards. Recent
advances have shown that RL can give rise to extremely powerful
artificial intelligence (AI) systems (Mnih et al., 2015; Silver et al.,
2018). RL modeling has also greatly helped advance our under-
standing of motivated human behavior in both simple conditioning
contexts and much more complex learning environments (Collins &
Frank, 2012, 2013; Farashahi et al., 2017; Gläscher et al., 2010;
Leong et al., 2017; Niv, 2009). However, despite tremendous recent
progress, artificial RL agents are unable to mimic and capture
humans’ ability to learn fast, efficiently, as well as transfer and
generalize knowledge (Botvinick et al., 2009; Collins, 2019; Diuk,
Schapiro, et al., 2013; Lake et al., 2017).
Human behavior and cognition possess two key features that are

essential to humans’ efficient and flexible learning: cognitive re-
presentations are hierarchical (Badre, 2008; Koechlin & Jubault,
2006; Koechlin et al., 2003; Solway et al., 2014) and compositional

(Lake et al., 2017). Hierarchy has been identified as a crucial
element of cognition (Anderson et al., 2004; Taatgen et al., 2006)
in multiple domains such as perception (Bill et al., 2019; Lee &
Mumford, 2003; Van Essen & Maunsell, 1983; Wessinger et al.,
2001), decision making (Badre, 2008; Badre & D’Esposito, 2007;
Badre & D’esposito, 2009; Balleine et al., 2015; Dezfouli &
Balleine, 2012, 2013; Eckstein & Collins, 2019; Krigolson &
Holroyd, 2006; Tomov et al., 2020; Zarr & Brown, 2016), and
learning (Badre & Frank, 2011; Collins et al., 2014; Collins &
Frank, 2013; Eckstein & Collins, 2019; Frank & Badre, 2011).
Hierarchy in choices is often temporal (Botvinick, 2007;
Botvinick & Plaut, 2004): Choices may be described at multiple
degrees of granularity by breaking them down into more and more
basic chunks. For example, the task of making dinner can be broken
down to making potatoes and making black beans; making potatoes
can be broken down into sub-tasks such as cutting potatoes, boiling,
etc., However, hierarchical levels may also represent different
degrees of state abstractions at a similar time scale (Badre, 2008;
Collins, 2018; Collins & Frank, 2013; Koechlin et al., 2003): For
example, you may decide to make dinner (highest, most abstract
level), which will consist of a salad, which will specifically be a
Cesar salad (lowest, most concrete level).

Human behavior is also compositional: Humans are able to
compose simpler skills together in novel ways to solve new tasks
in real life. For example, we can combine cutting potatoes with
different routines to accomplish various tasks including fried pota-
toes, mashed potatoes, etc., Compositionality goes hand in hand
with hierarchy, as it assumes the existence of different levels of
skills. It has also been central to the study of human cognition
(Biederman, 1987; Franklin & Frank, 2018; Lake et al., 2015) and

This article was published Online First May 20, 2021.

Anne G. E. Collins https://orcid.org/0000-0003-3751-3662
We thank Katya Brooun, Ham Huang, Helen Lu, Sarah Master, and

Wendy Shi for their substantial contribution to the project. We thank Rich
Ivry, Milena Rmus, and Amy Zou for feedback on this draft. This work was
supported by NIMH RO1MH119383.
Correspondence concerning this article should be addressed to Anne G.

E. Collins, Department of Psychology, University of California, Berkeley,
2121 Berkeley Way, Berkeley, CA 94720, United States. Email: anne
collins@berkeley.edu

Psychological Review

© 2021 American Psychological Association 2021, Vol. 128, No. 4, 643–666
ISSN: 0033-295X https://doi.org/10.1037/rev0000295

643

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/rev0000295.supp
https://orcid.org/0000-0003-3751-3662
mailto:annecollins@berkeley.edu
mailto:annecollins@berkeley.edu
mailto:annecollins@berkeley.edu
https://doi.org/10.1037/rev0000295


artificial agents (Andreas et al., 2017; Peng et al., 2019; Wingate
et al., 2013; Xu et al., 2018).
While it is well established that human behavior is hierarchical

and compositional, how we learn such representations remains
poorly characterized. A theoretical framework of interest is the
hierarchical reinforcement learning (HRL) options framework
(Sutton et al., 1999), originally proposed in AI, which incorporates
aspects of both hierarchy and compositionality in an effort to make
learning more flexible and efficient. The options framework aug-
ments traditional RL algorithms by allowing agents to select not
only simple actions, but also options in different states. Broadly

summarized, options are temporally extended multi-step policies
assembled from simple actions or other simpler options to achieve a
meaningful subgoal (see Sutton et al., 1999 for a formal definition).
Consider making potatoes as an example option. We can break
down the task into sub-options such as cutting potatoes, boiling, etc.
(Figure 1). These sub-options can be further divided into simpler
tasks. In the HRL options framework, agents can learn option-
specific policies (e.g., how to make potatoes) by using, for example,
subgoals as pseudo-rewards that reinforce within-option choices.

Options are referred to as temporal abstractions because selecting
an option is a single decision step, but this single decision may

Figure 1
Schematics of How State and Temporal Abstractions Can Be Used to Describe Increasingly
More Complex Human Cognition

Note. FlatModel.The usual flat RLmodel learns one-step policies for different vegetables (potatoes and
carrots) separately as different states (gray), with potentially multiple actions leading to reward in a given
state (e.g., boil or stir fry potatoes). Task-set Model. The task-set model clusters both potatoes and carrots
into the same state abstraction, namely, vegetable, thus everything learned about one vegetable will be
immediately transferable to all the other vegetables. However, the task-set model only learns one-step
policies, and in this non-Markovian task is unable to resolve the optimal action after the vegetable is cut,
since it can be either boiled (blue) or stir fried (green). Option Model. The option model learns state
abstractions, but also temporal abstractions by combining one-step rules into temporally-extended policies,
resolving the action selection after the vegetable is cut by activating a temporal abstraction from the
beginning. Now one activates either the option of boiling vegetable (blue) or stir frying vegetable (green)
from the start of cutting vegetable. Sequence LearningModel. The sequence learning model learns about
optimal action sequences starting from the initial state ((cut, boil) for boiling vegetable, i.e., blue; (cut, stir
fry) for stir frying vegetable, i.e., green); however, it does not learn full-fledged policies, and thus cannot
deal with tasks that require state-dependency (see Experiment 1 design, Figure 2A for an example) once a
sequence is initiated. See the online article for the color version of this figure.
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trigger a series of decisions constrained by the option (until the
option terminates), so that time is compressed in a single decision.
Each option is additionally characterized by an initiation set (the

set of states where the option can be initiated), and a termination
function that maps each state to the probability of terminating the
current option. For example, the initiation set for the option of
making potatoes might be kitchen, and the option might terminate
when the potatoes are cooked. Agents learn when to select options in
the same way they learn to select actions (e.g., make potatoes for
breakfast in the U.S., but not in France) by using normal reinforce-
ment signals. Agents learn the policies determined by an option
using pseudo-rewards obtained when reaching the subgoal.
The options framework provides many theoretical benefits for

learning (Botvinick et al., 2009; Botvinick & Weinstein, 2014),
assuming that useful options are available. Unlike traditional RL
algorithms that only learn step-by-step policies, options help explore
more efficiently and plan longer term. For example, when we learn
how to cook a new kind of potato, we already know how to cut
potatoes. Moreover, we can plan with high-level behavioral mod-
ules such as cutting potatoes, instead of planning in terms of
reaching, grabbing, and peeling. If non-useful options are available,
the options framework predicts that learning can be instead slowed
down (Botvinick et al., 2009). The question of how to identify and
create useful options has been a topic of active and intense research
in AI (Fox et al., 2017; Jayaraman et al., 2018; Jiang et al., 2019;
Machado, Bellemare, et al., 2017; Machado, Rosenbaum, et al.,
2017; McGovern &Barto, 2001; Menache et al., 2002; Nair & Finn,
2019; Şimşek & Barto, 2004; Xu et al., 2019).
Recent literature (Diuk, Schapiro, et al., 2013; Diuk, Tsai, et al.,

2013; Ribas-Fernandes et al., 2019, 2011; Schapiro et al., 2013)
shows early evidence that the options framework could be a useful
model of human learning and decision making. Diuk, Schapiro,
et al. (2013; Schapiro et al. 2013) showed that participants were
able to spontaneously identify bottleneck states from transition
statistics, which aligned with graph-theoretic objectives for option
discovery developed in AI (Menache et al., 2002). In addition, in
hierarchical decision-making tasks, Diuk, Tsai, et al. (2013; Ribas-
Fernandes et al., 2019, 2011) showed that human participants
signaled reward prediction error (RPE), a key construct for RL
algorithms, for both subgoals and overall goals. These results
indicate that humans are able to identify meaningful subgoals,
and to track sub-task progression, both key features of the options
framework. Botvinick (2012; Holroyd & Yeung, 2012) have also
suggested potential neural correlates for implementing the compu-
tations required to use options.
However, the fundamental question of whether and how humans

learn and use options during learning remains unanswered (Diuk,
Schapiro, et al., 2013): There is little work probing the learning
dynamics in tasks with a temporal hierarchy, or directly testing the
theoretical benefits of options in a behavioral setting. In this article,
we aim to (a) characterize how humans learn representations that
support hierarchical and compositional behavior and (b) investigate
whether an expanded options framework can account for it. In
particular, do humans create options in such a way that they can
flexibly reuse them in new problems? If so, how flexible is this
transfer? In order to address these questions, we need to first identify
aspects of human learning and transfer that reflect the use of options,
but cannot be explained by traditional RL, from a modeling
perspective.

Previous research (Collins et al., 2014; Collins & Frank, 2013,
2016a) showed evidence for flexible creation and transfer of a
simple type of options that operate in non-sequential environments:
one-step policies, also called task-sets (Monsell, 2003). While a
vanilla flat RL model learns about state-action mappings (policies)
as they are, such as cutting, boiling, and stir frying potatoes
(Figure 1), RL models that learn task-sets achieve transfer by
learning state abstractions. For example, the model, after learning
the policy of cutting potatoes, can generalize to cutting other
vegetables by clustering the vegetables that it has never encountered
before to the context of potatoes. Collins et al. (2014; Collins &
Frank, 2013, 2016a) showed that humans can create multiple task-
sets over the same state space in a context-dependent manner in a
contextual multi-armed bandit task; furthermore, humans can cluster
different contexts together if the task-set is successful. This cluster-
ing structure provides opportunities for transfer, since anything
newly learned for one of the contexts can be immediately general-
ized to all the others in the same cluster (Figure 1). Moreover,
human participants can identify novel contexts as part of an existing
cluster if the cluster-defined strategy proves successful, resulting in
more efficient exploration and faster learning.

However, the task-sets framework only supports hierarchy in
“state abstraction,” not hierarchical structure in time (also called
“temporal abstraction”; Figure 1), an essential component of the
options framework. Since most real world tasks require multiple
steps, RLmodels that only learn one-step task-sets are not sufficient.
In particular, note that RLmodels that only learn task-sets might still
get confused about whether it should boil or stir fry after the
vegetable is cut. This is due to the non-Markovian (or semi-
Markovian; Sutton et al., 1999) aspect of the environment: For
the same observed state (cut vegetable), the optimal action might be
different depending on the overarching goal, that cannot be currently
observed. An RL model that further learns temporal abstractions
such as options would instead combine one-step task-sets together
as one abstract behavioral module. Once a specific option is
activated, it resolves the ambiguity regarding the optimal action
following cutting vegetable.

Here, we propose that combining state abstraction from task-set
transfer (Collins et al., 2014; Collins & Frank, 2013, 2016a) and
temporal abstraction from the options framework (Sutton et al.,
1999) can provide important insights into complex human cogni-
tion. The additional temporal hierarchical structure offered by
options should enable transfer of prior knowledge at multiple levels
of hierarchy, providing rich opportunity for capturing the flexibility
of human transfer. For example, in addition of being able to resolve
the optimal action in a non-Markovian task (Figure 1), if humans
have learned the simple sub-option of boiling water while learning
how to make coffee, they do not need to re-learn it for learning how
to make tea or steamed potatoes; this sub-option can instead be
naturally incorporated into a tea-making option, speeding up
learning.

In this article, we present a new experimental protocol that allows
us to characterize how humans develop hierarchical and composi-
tional representations to guide behavior during trial-by-trial learning
from reward feedback. In particular, it allows us to test whether
humans create options during learning, and whether they use them in
new contexts to explore more efficiently and transfer learned skills,
at multiple levels of hierarchy. Our new two-stage learning game
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provides participants opportunities to create and transfer options at
multiple levels of complexity.
To characterize how humans learn hierarchical and compositional

representations to interact with the world and to test various pre-
dictions of learning and transferring temporal abstractions, we
conducted a series of four experiments. The structure of the envi-
ronment in Experiment 1 was non-Markovian, encouraging parti-
cipants to learn option-like temporally extended policies, and
included test phases in which options could be transferred or re-
composed; indeed, we found evidence of participants learning and
transferring options at multiple levels. Experiment 2 provided a
replication of Experiment 1 and further revealed interesting inter-
action between option transfer and meta-learning, as well as the
complexity of credit assignment in hierarchical tasks. Experiment 3
mimicked Experiment 1, but removed the non-Markovian feature of
Experiment 1: Because all relevant information was observable,
there was no additional benefit to creating options. Thus, Experi-
ment 3 allowed us to test whether participants would spontaneously
learn and transfer options even when there was no behavioral benefit
to do so. Last, Experiment 4 aimed to test whether participants could
compose options learned at different times and different levels.
Given that humans can transfer task-sets to novel contexts (Collins
et al., 2014; Collins & Frank, 2013, 2016a), we hypothesized that
humans would learn and transfer options to guide exploration and
achieve better learning performance. The results of these four
experiments (three replicated in an independent sample) showed
that human participants are able to learn, flexibly transfer, and
compose option-like temporally extended policies at multiple levels.
We also present a formal computational RL model that brings

together aspects of the classic HRL options framework with the task-
set model’s Bayesian inference mechanisms for clustering and
transfer. The model combines the benefits of both frameworks.
Specifically, the model relies on HRL-like options at three levels of
hierarchy, and uses HRL-like learning mechanisms (using both
rewards and pseudo-rewards) to learn policies and option-specific
policies, respectively. Furthermore, our model uses Bayesian infer-
ence with a non-parametric prior to guide exploration and selection
of options, inspired by the task-set model, and in that sense departing
from traditional HRL framework. Our model makes specific pre-
dictions about learning, transfer, exploration, and error types in the
four experiments. Our computational model captured the observed
patterns of behavior, supporting the importance of hierarchical
representations of choices for flexible, efficient, generalizable learn-
ing, and exploration. Additionally, we showed that other models,
including flat RL models, hierarchical RL models with no temporal
abstraction, or sequence-learning models are insufficient in explain-
ing the learning and transfer patterns we observe in human parti-
cipants. Thus, our new experimental and theoretical framework
characterizes how humans learn hierarchical and compositional
representations to interact with our environment, and shows how
this supports flexible transfer and efficient exploration.

Experiment 1

Experiment 1 was designed to test if human participants are able
to learn and flexibly transfer options. We designed a sequential
two-step decision-making paradigm (where each step was a contex-
tual four-armed bandit) to allow participants to learn options at
multiple levels of complexities. Options changed between blocks,

but the design provided participants with opportunities to practice
reusing previously learned options. In two final test blocks, we
directly tested creation and transfer of options by changing and/or
combining previously learned options in novel ways.

Method

Participants

All experiments were approved by the Institutional Review Board
of the University of California, Berkeley (UCB). Experiment 1 was
administered in-lab to UCB undergraduates who received course
credit for their participation. 34 (22 female; age: mean = 20.6,
sd = 1.6, min = 18, max = 24) UCB undergraduates participated
in Experiment 1, and nine participants were excluded due to
incomplete data or poor learning performance, resulting in 25
participants for data analysis.

For replication purposes, we also recruited participants through
Amazon Mechanical Turk (MTurk; Paolacci et al., 2010) who
performed the same experiment online. Participants were compen-
sated a minimum of $3 per hour for their participation, with a bonus
depending on their performance to incentivize them. 116 partici-
pants (65 female; see age range distribution in Supplementary Table 3)
finished the experiment. 61 participants were further excluded
due to poor performance (see Data Analysis section for explana-
tions about the high exclusion rate), resulting in 55 participants for
data analysis.

Experiment 1 In-Lab Protocol

Experiment 1 consisted of eight 60-trial blocks (Figure 2A), with
optional 20-s breaks in between blocks. In each block, participants
used deterministic truthful feedback to learn which of four keys to
press for four different shapes. Each trial included two stages; each
stage involved participants making choices in response to a single
stimulus (Figure 2A) by pressing one of four keys. Each trial started
with one of two possible stimuli, henceforth the first stage stimuli
(e.g., circle and square). Participants had 2 s to make a choice.
Participants only moved on to the second stage of the trial when they
pressed the correct key for the first stage stimulus, or after 10
unsuccessful key presses, which enabled them to potentially try all
four keys for a given stimulus in a single trial. Specifically,
unsuccessful key presses led to a repeat of the exact same first-
stage shape. Successful key press for the first stage of a trial did not
result in reward feedback, but triggered a transition to the second
stage, where participants saw one of the two other stimuli, hence-
forth labeled second stage stimuli (e.g., diamond and triangle). To
prevent participants from learning action sequences, the second
stage stimuli were unpredictable: Both first stage stimuli led to both
second stage stimuli equally often. Shapes were randomly assigned
to either first or second stage across participants. In the second stage,
participants also could not move on until they selected the correct
choice (or selected wrong 10 times in a row for the same image).
Participants received explicit feedback after each second stage
choice: the screen indicated 1/0 point for pressing the correct/
incorrect key, displayed for 0.5 s (Figure 2A). After a correct
second stage choice, participants saw a fixation cross for 0.5 s,
followed by the next trial’s first stage stimulus. Each block
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contained 60 trials, with each first stage stimulus leading to each
second stage stimulus 15 times in a pseudo-randomized sequence of
trials.
Crucially, the correct stimulus-action assignments were designed

to create a non-Markovian environment, and thus to encourage the
creation of multi-step policies. In particular, second stage correct
choices were dependent on what the first stage stimulus was—for
example, in Block 1’s second stage, pressing action A2 for a triangle
only led to a reward if the first stage stimulus was a circle; if it was a
square, participants needed to press action A3 for the triangle to
obtain reward (Figure 2A). This encouraged participants to make
temporally extended choices (potentially options): Their second
stage strategies needed to depend on the first stage. The contingen-
cies were also designed to test their grouping into sets of policies at
multiple levels. Indeed, assignments, illustrated in Figure 2A,
changed across blocks. Blocks 1, 3, 5 shared the same assignments;
Blocks 2, 4, 6 shared the same assignments; this encouraged
participants to not unlearn policies, but rather discover that they

could reuse previously learned multi-level policies as a whole in
new blocks.

Assignments in Blocks 7 and 8 intermixed some of the learning
block assignments with new ones to test (positive and negative)
transfer of options at various hierarchy levels. Specifically, the
protocol was set up so that participants could learn up to three
levels of hierarchical task structure (low, mid, and high level
policies). More precisely, low-level options (LO) corresponded to
second stage policies (a pair of stimulus-action associations, com-
monly labeled a task-set; Monsell, 2003). Mid-level options (MO)
were policies over both first and second stage stimuli. High-level
options (HO) were policies over MOs (a pair of stimulus-MO
associations in the first stage, which could be thought of as a
task-set over options). As a concrete analogy, in Blocks 1, 3, 5,
the participants learned how to make breakfast (HO1), consisting of
potatoes (MO1) and eggs (MO2). Making potatoes (MO1) was
broken down into cutting potatoes (the first stage) and then roasting
(the second stage, LO1). In Blocks 2, 4, 6, participants learned how

Figure 2
Experiment 1 Protocol and Overall Performance

Note. (A) Experiment 1 design. Left: Block and trial structure; Blocks 1–6 were learning blocks, followed by two testing blocks: Blocks 7
and 8. Each block had 60 trials. In each trial, participants needed to select the correct response for the first stage stimulus (e.g., circle) in order to
move on to the second stage stimulus (e.g., triangle), where they could win points by selecting the correct response. Right: Stimulus-action
assignments; in Blocks 1–6, participants had the opportunity to learn options (temporally-extended policies) at three levels of complexity: high,
middle, and low-level options (HO, MO, and LO). In the testing phase, Block 7 tested participants’ ability to reuse MO policies outside of their
HO context, potentially eliciting positive transfer (green) of LOs in the second stage, and negative transfer (red) of choices in the first stage. Block
8 tested predicted positive transfer in the first stage, but negative transfer of MO policies in the second stage, by replacing old LOs with new ones.
Blocks were color-coded for later result figures: Blocks 1–4 gray; Blocks 5–6 purple; Block 7 rose; Block 8 blue. (B) Average number of key
presses in the first and the second stages per block. Chance is 2.5; ceiling is 1 press. (C) Average number of key presses for the first 10 trials of
Blocks 5–8 for the first (left) and second stages (right). We use n.s. to indicate p ≥ .1; † for p < .1; * for p < .05; ** for p < .01; *** for
p < .001; and >*** for p < .0001. We indicated all statistical significance with these notations in further figures. See the online article for the
color version of this figure.
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to make lunch (HO2), consisting of carrots (MO3) and sandwich
(MO4). Making carrots (MO3) was broken down into washing
carrots (the first stage) and then steaming (the second stage, LO3).
Block 7 tested positive transfer of second stage policies and

negative transfer of first stage policies. In particular, we combined
the policies for potatoes from breakfast (MO1) and sandwich from
lunch (MO4) to form a new policy HO3 (dinner). If participants build
three levels of options, we expect positive transfer of mid-level
optionsMO1 andMO4: participants should be unimpaired in making
potatoes or a sandwich. However, we expect negative transfer of
high-level options HO1 and HO2: participants seeing that making
potatoes was rewarded might start making eggs as usual in breakfast
(HO1), instead of sandwich as rewarded here.
Block 8 tested positive transfer of first stage policies and negative

transfer of second stage policies. In particular, the first stage of
Block 8 shared the same assignments as Blocks 1, 3, 5 in the first
stage, allowing participants to immediately transfer HO1. However,
the second stage policies (LO5 and LO6) were novel, which might
potentially result in negative transfer: For example, participants
might try to transfer LO1 (roasting) followingMO1 (make potatoes),
but the second stage policy was changed to LO5 (e.g., frying).

Experiment 1 MTurk Protocol

To replicate our findings, we ran a minimally modified version of
Experiment 1 online via MTurk. The task was slightly shortened,
due to evidence that in-lab participants reached asymptotic behavior
(Supplementary Figure S17) early in a block, and to make the
experiment more acceptable to online workers. Blocks 1 and 2 had a
minimum of 32 and a maximum of 60 trials, but participants moved
on to the next block as soon as they reached a criterion of less than
1.5 key presses per second stage trial in the last 10 trials (the 55
Mturk participants included for data analysis on average used 42
(sd = 10, median = 37, min = 32, max = 60) trials in Block 1 and
39 (sd = 10,median = 33, min = 32, max = 60) trials in Block 2).
Blocks 3–8 were all shortened to 32 trials, with each first stage
stimulus leading to each second stage stimulus eight times.

Data Analysis

We used the number of key presses until correct choice in each
stage of a trial as an index of performance. Since the experiment
would not progress unless the participants chose the correct action,
more key presses indicates worse performance. Ceiling performance
was 1 press per stage within a trial. Chance level was 2.5, assuming
choosing 1 out of 4 keys randomly, unless indicated otherwise. To
probe for any potential transfer effects, we calculated the average
number of key presses at the beginning of each block (Trials 1–10),
before learning has saturated. As a stronger test of option transfer,
we also calculated the probability that the first press for a given
stimulus at each stage of a trial was correct in different blocks.
To rule out participants who were not engaged in the task, we

excluded any participant who did not complete Blocks 5–8 within an
allotted amount of time (6 min each)—indeed this could only
happen if participants often reached the 10 key presses needed to
move on to the next stage without the correct answer, a clear sign of
no engagement.
We additionally excluded any participant whose average perfor-

mance in the last 10 trials of either first or second stage in either

Block 5 or 6 was at or below chance, since it indicated a lack
of learning and engagement in both stages of the task. These
exclusion criteria were applied to all experiments, including Mturk
participants.

Note that the analysis of the first 10 trials and the last 10 trials
served different purposes, since they reflected different stages of
learning. The beginning of each block when participants had not yet
integrated all the new block information was where we expected to
see transfer effects. On the other hand, the last 10 trials of a block
showed asymptotic performance and were used to ensure learning
had occurred, in particular for exclusion criteria. In short, the
performance in the last 10 trials answered the question of how
participants made choices after repeated exposure to the same
environments for many iterations, while the first 10 focused on
learning (and potentially transfer) in a new environment.

Among 116 Mturk participants in Experiment 1, 104 were above
chance in the second stage (the more difficult one), but only 55 were
above chance in the first stage (the easier one). Thus most partici-
pants were excluded due to the first stage performance criterion. The
same trend was true for the other two Mturk experiments: Most
Mturk participants were excluded due to performance in the first
stage in Experiment 3 and Experiment 4. We hypothesize that the
poor first stage performance in many is due to the task’s incentive
structure—participants knew they only earned points (which were
converted to monetary bonus for MTurk participants) in the second
stage. All second stage results were qualitatively similar to the ones
reported in this article for all experiments when we relaxed the
exclusion criterion to include participants at chance in the first stage.

The options framework makes predictions about the specific
choices made in response to a stimulus, beyond whether a choice
is correct: The nature of the errors made can be informative (Collins &
Frank, 2013). We categorized the specific choices participants
made into meaningful choice types, to further test our predictions
about potential option transfer effects. As the choice types were
stage and experiment dependent, we describe the choice type
definitions in the result sections where necessary. When performing
choice type analysis, we only considered the first key press of the
first or second stage in each trial. We also compared reaction time of
different choice types to test potential sequence learning effects.

For statistical testing, we used parametric tests (ANOVAs and
paired t-test) when normality assumptions were held, and non-
parametric tests (Kruskall–Wallis and sign test) otherwise.

Computational Modeling

To quantitatively formalize our predictions, we designed a
computational model for learning and transferring options, inspired
by the classic HRL framework as well as other hierarchical RL
literature (Collins & Frank, 2013; Sutton et al., 1999). We simulated
this model, as well as four other learning models that embody
different hypotheses about learning in this task, and compared which
model best captures patterns of human learning and transfer. All
models were simulated 500 times. We did not fit the model to the
trial-by-trial choices of participants because computing the likeli-
hood of the hierarchical models is intractable. In flat reinforcement
learning models, state, action, and rewards on each trial are fully
observed. However, for the main HRLmodel used in this article, we
assume that participants first select an option, conditioned on which
they select a primitive action. Note that we only observed the
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primitive action from participants’ key presses, not the selection of
options. Therefore, in order to calculate the full likelihood, one
would have to marginalize the option choices for each trial, resulting
in the integration of exponentially many trajectories throughout the
experiment. Even if participants only needed to choose between
2 hidden options, participants often made more than 1,000 key
presses in our experiment, which would require summing over
21000(>10300) trajectories, rendering the calculation of the likeli-
hood function intractable.
All results presented in the main text figures were simulated with

parameters chosen to match participants’ behavioral patterns quali-
tatively and quantitatively well (Supplementary Table 1). However,
our qualitative predictions are largely independent of specific model
parameters: We show in the supplement that a single set of
parameters (Supplementary Table 2), consistent across all experi-
ments, makes the same qualitative predictions regarding transfer
effects.
The Naive Flat Model. The Naive Flat Model is a classic

reinforcement learning model that learns Q-values to guide action
selection in response to stimuli. In the first stage, it learns a Q-value
tableQ1(Fi, Aj

1), where F1 and F2 are two first stage stimuli, A1, : : : ,
A4 are four possible actions. We use superscript to index stage
(1 means first stage, 2 means second stage). The Q-values are
initialized to uninformative Q-values 1=#fpossible actionsg = 1

4,
since each of the four actions has an equal probability of resulting
in a pseudo-reward of 1 for transitioning into the second stage. On
each choice, a first stage policy is computed based on the first stage
stimulus, Fi, with the softmax function:

PðA1
j jFiÞ =

expðβ1 � Q1ðFi,A
1
j ÞÞP

k expðβ1 � Q1ðFi,A1
kÞÞ

, (1)

where β1 is the inverse temperature parameter. A first stage action
A1, ranging from A1 to A4, is then sampled from this softmax policy.
After observing the outcome (moving on to the second stage or not),
the Q-values is updated with Q-learning (Sutton & Barto, 2018):

Q1ðFi,A1Þ = Q1ðFi,A1Þ + α1 � ðr − Q1ðFi,A1ÞÞ, (2)

where α1 is the learning rate parameter, and the pseudo-reward r is 1
if A1 is correct and 0 otherwise.
In the second stage, the model similarly learns another Q-value

table Q2(Si, Aj
2), where S1 and S2 are two second stage stimuli, with

learning rate α2 and inverse temperature β2. Note that this disregards
the non-Markovian nature of the task: It learns the Q-values for the
two second stage stimuli without remembering the first stage
stimulus. As such, this model is a straw man model that cannot
perform the task accurately, but exemplifies the limitations of classic
RL in more realistic tasks, and serves as a benchmark.
At the start of a new block, the Naive Flat Model resets all

Q-values to 1
4, and thus has to re-learn all Q-values from scratch.

To better account for human behavior, we also included two
forgetting parameters, f 1 and f 2. After each choice, the model
decays all Q-values for the first stage based on f1:

Q1ðFi,A1
j Þ = ð1 − f 1Þ � Q1ðFi,A1

j Þ + f 1 � 1
4
: (3)

Forgetting in the second stage is implemented similarly.

Participants very quickly learned that the correct second stage
action was different from the first stage one (see results). To account
for this meta-learning heuristic, we add a free meta-learning param-
eter, m, that discourages selecting the same action in the second
stage as in the first stage. Specifically, if π is the second stage policy
as computed from softmax, we set P(A1|Si) = m, where A1 is the
action chosen in the first stage, and re-normalize:

PðAotherjSiÞ = ð1 − mÞ × πðAotherÞ=ð1 − πðA1ÞÞ, (4)

where Aother is any action other than A1.
Parameters f 1, f 2 and m, which capture memory mechanisms and

heuristics orthogonal to option learning, are included in all models
and implemented in the same way. In total, the Naive Flat Model has
seven parameters: α1, β1, f 1, α2, β2, f 2, m.

The Flat Model. The Flat Model extends the Naive Flat Model
with a single addition of first-stage memory, which makes this
model able to perform the task well in both stages. Specifically, in
the second stage, the Flat Model remembers the first stage stimulus
by treating each of the four combinations of the first and second
stage stimuli as a distinct state and learns Q-values for all four
combinations. The Flat Model has the same seven parameters as the
Naive Flat Model.

The Task-Set Model. The Task-Set Model is given the capa-
bility of transferring previously learned task-sets (one-step policies)
with Bayesian inference. In particular, the Task-Set Model uses
Chinese Restaurant Process (CRP; Pitman, 2006), a nonparametric
Bayesian prior, that specifies the probability of transferring one of
the previously learned task-sets and the probability of creating a new
task-set and learning from scratch. In the first stage, the model tracks
the probability P1 of selecting each first stage task-set HOi in
different first stage contexts cj

1, which encodes the current temporal
(block) context (e.g., eight contexts in the first stage of Experiment 1
due to eight blocks). The model uses CRP to select HO: if contexts
fc11∶ng are clustered on N1 ≤ n HO’s, when the model encounters a
new context fc1n+1g, the prior probability of selecting a new high-
level option HOn + 1 in this new context is set to:

P1ðHOn+1jc1n+1Þ =
γ1

Z1 ; (5)

and the probability of reusing a previously created high-level option
HOi is set to:

P1ðHOijc1n+1Þ =
N1

i

Z1 , (6)

where γ1 is the clustering coefficient for the CRP, Ni
1 is the number

of first stage contexts clustered on HOi, and Z1 = γ1 +
P

i N
1
i is the

normalization constant. The new HOn + 1 policy is initialized with
uninformativeQ-values 1=#fpossible actionsg = 1

4. The model sam-
ples HO based on the conditional distribution over all HOs given the
current temporal context. The model also tracks HO-specific poli-
cies via Q-learning. Once an HO is selected, a first stage policy is
computed based on the HO’sQ-values and the first stage stimulus Fi

with softmax:

PðA1
j jFi, HOÞ =

expðβ1 � Q1
HOðFi,A1

j ÞÞP
k expðβ1 � Q1

HOðFi,A
1
kÞÞ

, (7)

HUMAN OPTION LEARNING, TRANSFER, AND COMPOSITION 649

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/rev0000295.supp
https://doi.org/10.1037/rev0000295.supp


where β1 is the inverse temperature. A first stage action A1, ranging
from A1 to A4, is then sampled from this softmax policy. After
observing the outcome (moving on to the second stage or not), the
model uses Bayes’ Theorem to update P1:

P1ðHOkjc1j Þ =
PðrjFi,A1, HOkÞPðHOkjc1j ÞP
l PðrjFi,A1, HOlÞPðHOljc1j Þ

, (8)

where the pseudo-reward r is 1 if A1 is correct and 0 otherwise, and
PðrjFi,A1, HOlÞ = 1 − Q1

HOl
ðFi,A1Þ if r = 0, or Q1

HOl
ðFi,A1Þ if

r = 1. Then the Q-values of the HO with the highest posterior
probability is updated:

Q1
HOðFi,A1Þ = Q1

HOðFi,A1Þ + α1 � ðr − Q1
HOðFi,A1ÞÞ, (9)

where α1 is the learning rate.
The second stage runs a separate CRP with P2, similar to P1 in the

first stage, which guides selection of task-sets LO over second stage
stimuli. All other aspects are identical to the first stage except that
the second stage contexts are determined by both temporal (block)
context and the first stage stimulus (e.g., 16 contexts in the second
stage of Experiment 1 due to eight blocks and two first stage
stimuli). All the equations of CRP, action selection, and Q-learning
remain the same. The Task-Set Model has nine parame-
ters: α1, β1, γ1, f 1, α2, β2, γ2, f 2,m.
The Option Model. The Option Model extends the task-set

model to include multi-step decisions (mid-level options MO). The
first stage is identical to the Task-Set Model. However, instead of
just choosing an action for the first stage, a whole MO is activated.
For example, if the circle is observed in Block 1, HO1 may trigger
the model to select MO1, which triggers the selection of A1. The
selection ofMO1would then make the model likely to select LO1 for
the second stage (Figure 2B). To simplify credit assignment, we
make the simplifying assumption—warranted in our task—that
there is a one-on-one mapping between first-stage actions and
options, allowing us to index MOs by their first-stage action.
This is meant as a technical simplification, rather than a theoretical
assumption.
The second stage is the same as the Task-Set Model, except that

each MO has an MO-specific probability table P2
MO. In the Task-Set

Model, the CRP in the second stage using P2 is independent of the
first stage choices. In contrast, in the Option Model, the first stage
choice determines which MO is activated, which then determines
which probability table, P2

MO, to use for running the CRP in the
second stage to select LOs. This implementation captures the
essence of options in the HRL framework, in that selection of
MO in the first stage constrains the policy chosen until the end of the
second stage (where the option terminates). The Option Model has
the same nine parameters as the Task-Set Model. A full description
can be found in the supplement.
Note that in our Option Model, there are two ways in which the

option selection is instantiated. (a) Oneway is to use inference with a
CRP prior (Pitman, 2006): instead of estimating the values of
different HO’s through incremental Q-learning, we estimated the
likelihood of reward after selecting each HO’s using Bayes’ for-
mula. This is inspired from our previous task-set model (Collins &
Frank, 2013), and equips our OptionModel with a level of flexibility
in transfer (by inferring which option is likely to be useful in a new
environment), something that traditional HRL options framework

cannot achieve. We discuss this departure from classic HRL options
framework further in the discussion (Initiation Set section). (b) We
also implemented the option value functions by learning the values
of different MO’s within each HO’s. Since MO are indexed by their
first-stage action, theQ-values that participants learned for actions in
the first stage correspond to MO option values. This is in line with
the classic option values in the HRL options framework (Sutton
et al., 1999).

Sequence Learning Model. For completeness, and to show
that sequence learning cannot account for learning in this experi-
ment, we also simulated a simple sequence learning model. This
model stores perfect memories of two-action sequences, and of
their association with a first-stage stimulus when that sequence
leads to reward. We assume that the model can perfectly store two-
action sequences associated with each first stage shape in each
block. On every trial, the model selects from the two-action
sequences associated with the first stage shape, each with 0.5
chance. For example, in Blocks 1, 3, 5 (Figure 2A), the model
would pick from sequences (A1, A4) and A1, A2) for the circle in the
first stage. However, since the model cannot predict which shape
will come up in the second stage, there is 0.5 chance that the
selected action sequence would be incorrect, in which case the
model would immediately choose the second stage action of
the other action sequence in the next attempt. For example, if
the model selects sequence (A1, A4) upon encountering circle
in the first stage, there is 0.5 chance that it will encounter a
diamond in the second stage, which the model would get the
correct answer in 1 press. However, there is also 0.5 chance that it
will encounter a triangle, in which case it will make an error by
pressing A4 as it was selected as part of the action sequence, and
then the model would choose A2, resulting in 2 presses. Therefore,
the sequence learning model will have an asymptotic performance
of 1.5 presses/trial in the second stage.

Note that the sequence learning model does not have any model
parameters as we assumed perfect memory of the action sequences
as well as optimal decision making. Including parameters such as
learning rate and inverse temperature would only worsen the
performance.

Experiment 1 Results

Participants Do Not Use Flat RL

Participants’ performance improved over Blocks 1–6 (Figure 2B)
and within blocks (Supplementary Figure S17). This improvement
may reflect the usual process of learning the task observed in most
cognitive experiments, as indicated by the improvement between
Block 1 and 2 (paired t-test, first stage: t(26) = 2.2, p = .03; second
stage: t(26) = 3.9, p = .0006). However, it could also reflect parti-
cipants’ ability to create options at three different levels in Blocks 1
and 2, and to successfully reuse them in Blocks 3–6 to adapt to
changes in contingencies more efficiently. Below, we present
specific analyses to probe option creation in test blocks. We used
participants’ performance averaged over Blocks 5 and 6 as a
benchmark for comparing against performance in test Blocks 7
and 8.

We probed potential option transfer effects over the first 10 trials
for each block (Figure 2C), before behavior reached asymptote
(Figure S17). In the first stage, there was a main effect of block
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on number of key presses (1-way repeated measure ANOVA,
F(2, 48) = 6.9, p = .002). Specifically, participants pressed signifi-
cantly more times in Block 7 than Blocks 5–6 and Block 8 (paired
t-test, Blocks 5–6: t(24) = 3.0, p = .006; Block 8: t(24) = 3.0,
p = .006). We also found no significant difference between the
performance of circle and square in Block 7 (Potential Asymmetry
in Block 7 of Experiment 1 in Supplementary section). These results
provide preliminary evidence for negative transfer of previously
learned HO in Block 7: Participants might attempt to reuse HO1 or
HO2, since either policy is successful for half the trials, but is
incorrect and thus results in more key presses in the first stage for the
other half of the trials. There was no significant difference between
Block 8 and Blocks 5–6 (paired t-test, t(24) = 0.25, p = .81). This
provides initial evidence for positive transfer of HO1 in Block 8,
since performance in the first stage of Block 8 was on par with
Blocks 5–6.
In the second stage (Figure 2C), there was also a main effect of

block in number of key presses (1-way repeated measure ANOVA,
F(2, 48) = 11, p < .0001). Specifically, participants pressed signif-
icantly more times in Block 8 than Block 7 and Blocks 5–6 (paired
t-test, Block 7: t(24) = 2.4, p = .025; Blocks 5–6: t(24) = 5.8,
p < .0001). The difference between Block 7 and Blocks 5–6 was
marginally significant (paired t-test, t(24) = 2.0, p = .06). These

results suggest that participants negatively transferred MO in the
second stage of Block 8, where the first stage choice that respected
the current MO was followed by a new LO for correct performance,
and thus necessitated to create a new MO.

Behavioral results in both the first and second stages provide
initial evidence for option learning and transfer at distinct levels,
both positive—when previous policies can be helpfully reused—
and negative—when they impair learning. To further validate our
hypothesis that participants learned options, we compared the
simulations of five models with human behavior (Supplementary
Table 1).

Among the five models (Figure 3A), only the Option Model and
the Task-Set Model could account for the transfer effects in the
second stage shown by the number of key presses. The Naive Flat
Model could not achieve reasonable performance in the second
stage because it ignored the non-Markovian aspect of the task—it
was unable to learn two different sets of correct choices for a given
second stage stimulus, because this required conditioning on the first
stage stimulus (Figure 2B). Thus, it serves to illustrate the limita-
tions of classic RL, but is a straw man model in this task. The Flat
Model achieved reasonable performance in both the first and second
stages, being able to take into account the first stage in second stage
decisions, but did not demonstrate any transfer effects. The sequence

Figure 3
Experiment 1 Second Stage Analysis

Note. (A) Average number of second stage key presses in the first 10 trials of Block 5–8 for participants as well as model simulations. We ran 500 simulations
of each hierarchical model (top) and flat model (bottom). See Supplementary Table 1 for model parameters. Behavioral results show patterns of positive and
negative transfer predicted by hierarchical, but not flat RL models. (B) Error type analysis of the second stage choices in Block 8. Top: We defined 1-to-1
mappings from the four actions to four choice types, three of which are error types. Bottom: Participants made significantly more option transfer errors than
other errors. This was predicted by the Option Model, but not by the Task-Set Model. (C) Probability of a correct first key press for the second stage of the first
trial of each of the four branches in Blocks 7–8 reveals positive and negative transfer prior in first attempt (left), as predicted by the Option Model (right). (D)
While participants’ performance is close to ceiling, the sequence learning model cannot do better than 1.5 presses/trial on average in the second stage because it
ignores the stimulus-dependency in the second stage. See the online article for the color version of this figure.
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learning model can never achieve reasonable asymptotic perfor-
mance in the second stage (Figure 3D). This is because the learned
action sequences disregard the state in the second stage (see
Computational Modeling section): the model cannot disambiguate
which action sequence to choose in the first stage without knowing
which shape will be shown in the second stage, which is random.
Thus the model is equally likely to need 1 or 2 presses in the second
stage, resulting in an average of 1.5 presses/trial. Note that, despite
assuming perfect memory and choice of sequences, this perfor-
mance is much worse than participants’ performance, which reaches
ceiling performance in the last 10 trials (Trials 51–60) of Blocks 5
and 6 at around 1.1 presses/trial (Figure 3D). This suggests that
participants behavior in this task cannot be accounted for by a pure
sequence learning model.
Since both the Option Model and the Task-Set Model demon-

strate the transfer effects in terms of average number of presses in the
first and second stages, results so far invalidate other models and
replicate previous findings that participants create one-step policies
or task-sets, that they can reuse in new contexts, leading to positive
and negative transfer (Collins et al., 2014; Collins & Frank, 2013,
2016a). However, results so far do not discriminate between the
Option Model and the Task-Set Model. We now present new
analyses to show that the findings extend to creating multi-step
policies or options.

Second Stage Choices Reveal Option Transfer

To strengthen our results, we further examined the specific errors
that participants made, as they can reveal the latent structure used to
make decisions. To further disambiguate between the Option Model
and the Task-Set Model, we categorized errors into meaningful
choice types (Collins & Frank, 2013). We focused on the second
stage choices for model comparison (Figure 3), the part of the
experiment designed so that temporally extended policies could
have an impact on decision making.
We hypothesized that participants learned MOs that paired the

policies in the first and second stages into a single mid-level,
temporally-extended option. Therefore, positive transfer in the
second stage of Block 7 and negative transfer in the second stage
of Block 8 should be due to participants selecting the entire MO that
was previously learned in response to a first stage stimulus, includ-
ing the correct key press for the first stage stimulus as well as the
corresponding LO for the second stage. We defined choice types
based on this hypothesis (Figure 3B). For example, for the second
stage of Block 8, consider the diamond following the circle in Block
8 (Figure 2A): A2 is the correct action; an A1 error corresponds to the
correct action in the first stage (“f-choice” type); an A4 error would
be the correct action if selecting MO1 as a whole (“option transfer”
type); an A3 error is labeled “other” type. Therefore, we have a 1-to-1
mapping between the four possible actions and four choice types,
three of which are error types.
We computed the proportion of the three error types for the

first three trials of each of the four branches in the second stage of
Block 8 (Figure 3B). Note that we picked the first three repetitions
to match the time frame of the first 10 trials used in previous
analyses (Figure 2C); results for the first two repetitions were
qualitatively similar. There was a main effect of error type (1-way
repeated measure ANOVA, F(2, 48) = 44, p < .0001). In partic-
ular, we found more “option transfer” errors than the “other” errors

(paired t-test, t(24) = 2.5, p = .02), suggesting that participants
selected previously learned MOs as a whole at the beginning of
the second stage of Block 8. The Option Model could reproduce this
effect because the agent selects an entire option (MO) in the first
stage: not only its immediate response to the first stage stimulus, but
also its policy over LO choice in the second stage. The Task-Set
Model could not reproduce this effect, because the first stage choice
was limited to the first stage, and the second stage did not use any
information from the first stage. Therefore, the error type profile in
Block 8 could not be accounted for by transfer of one-step task-sets
alone, ruling out the Task-Set Model.

There was also more “other” type than “f-choice” errors (paired
t-test, t(24) = 8.8, p < .0001). There were few “f-choice” errors,
likely due to meta-learning (Harlow, 1949; Wang et al., 2018):
participants observed that the correct action in the second stage was
always different from the first stage (Figure 2A). We included a free
meta-learning parameter m in all models (Computational Modeling
section) to capture this heuristic and quantitatively capture behavior
better.

We next analyzed Block 7 second stage errors. Because Block 7
allowed for full MO transfer, we predicted that there would not be
any specific error pattern in the second stage. The same choice type
definitions were not well-defined for the second stage of blocks
other than Block 8. Therefore, we categorized errors differently in
Blocks 1–7. For example, consider the diamond following the circle
in Blocks 1, 3, and 5 (Figure 2A): A4 is the “correct” choice; an A1

error corresponds to the correct choice in the first stage (“f-choice”
type); an A2 error corresponds to the correct action for the other
second stage stimulus, triangle, in the same LO, thus we defined it to
be the “sequence” type, because A2 followed the first stage correct
action A1 half of the time, as opposed to the “non-sequence” action
A3, which never happened after A1. Indeed, aggregating the first
three trials for each of the four branches in the second stage of
Blocks 5–7 (Supplementary Figure S6), we did not find any
significant difference in any of the four choice types between the
second stage of Block 7 and that of Blocks 5–6 (paired t-test, all
t(24) ≤ 1, all p’s > .30). While participants were pressing margin-
ally more times in Block 7 compared to Blocks 5 and 6 (Figure 2C),
this is likely due to the sudden change in the mappings. The
similarity in choice type distributions indicates that the positive
transfer in the second stage of Block 7 was not interfered by the
negative transfer in the first stage of Block 7, further confirming that
participants were selecting learned MOs as a whole, but re-
composing them together into a new HO. The Option Model is
also able to quantitatively capture the similarity of the choice type
profiles between Block 7 and Blocks 5–6 (Supplementary Figure S6).
We also compared the reaction time of the “sequence” and “non-
sequence” types to look for potential signatures of sequence learning
(see supplement for details).

The First Press in the Second Stage Reveals
Theoretical Benefit of Options

While the first several trials demonstrated transfer effects, the
Option Model predicts immediate transfer effect on the first press in
the second stage of a new block without any experience. Therefore,
we computed the probability of a correct choice on the first press for
the four branches in the second stage (Figure 3C), and compared to
chance (13, accounting for the meta-learning effect that the correct
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action in the second stage was always different from the first stage).
The probability of a correct first key press in Block 7 and Blocks 5–6
was significantly above chance (sign test, Block 7: p = .015; Blocks
5–6: p < .0001), without significant difference between the two
(sign test, p = .26). These positive transfer effects on the first press
support our prediction that participants were using previously
learned MO to guide exploration and thus speed up learning
even without any experience in Blocks 5–7. Block 8 was signifi-
cantly below chance (sign test, p = .004), independently indicating,
via negative transfer, exploration with previously learned MO in the
very first trials. The Option Model was able to quantitatively
reproduce these positive and negative transfer effects evident in
the first press in the second stage, since the first stage choice can
immediately help inform which LO to use in the second stage.

First Stage Choices Reveal Transfer of Policies
Over Options

To test whether participants learned HOs in the first stage, we
investigated errors in the first stage. We hypothesized that the
increase in key presses in the first stage of Block 7 (Figure 2C)
was due to selecting a previously learned but now wrong HO in the
first stage, which would be characterized by a specific error. We
categorized first stage errors (Figure 4A) into three types (“wrong
shape,” “wrong HO,” and “both wrong”), which we exemplify for

the circle in Blocks 1, 3, and 5 (Figure 2B): A1 is the “correct”
action; an A2 error corresponds to the correct action for the square in
the same block (“wrong shape” type); an A3 error corresponds to the
correct action for the circle in Blocks 2, 4, and 6 (“wrong HO” type);
and A4 is the “both wrong” type.

According to our hypothesis, we expected that the worse perfor-
mance in the first stage of Block 7 (Figure 2C) should be primarily
due to the “wrong HO” errors. We found a main effect of choice type
(2-way repeated measure ANOVA, F(3, 72) = 195, p < .0001) and
a significant interaction between block and choice type (F(3,
72) = 2.9, p = .04). In particular, this significant interaction was
driven by an increase in Block 7 “wrong HO” errors (Figure 4B),
compared to Blocks 5–6, although the direct comparison did not
reach significance (paired t-test, Wrong HO, t(24) = 1.9, p = .07;
other two error types: paired t-test, both p’s > .28). The Option
Model predicted this choice type profile in the first stage (Figure 4C),
by attempting to transfer previously learned HO, which would hurt
performance in the first stage of Block 7.

Experiment 1 Mturk Replicates Option Transfer in the
Second Stage

While in-lab participants’ behavior showed promising evidence
in favor of transferring multi-step options, we sought to replicate our
results in a larger and more diverse population. Therefore, we ran a

Figure 4
Experiment 1 First Stage Choices

Note. (A) Definition of choice types in the first stage. (B) Choice type analysis of the first stage in
Blocks 5–7 for participants (top) and the Option Model (bottom). Participants made significantly
more wrong HO errors in Block 7 than in Blocks 5–6, but no change for the other two error types.
This suggests that participants were negatively transferring HO in the first stage of Block 7, as
predicted by the Option Model. See the online article for the color version of this figure.
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shorter version of Experiment 1 on Mturk (Figure 5). In the second
stage, we replicated the main effect of block on the number of
presses (1-way repeated measure ANOVA, F(2, 108) = 19,
p < .0001). Specifically, the average number of key presses
(Figure 5A) in the first 10 trials of Block 7 was not significantly
different from that of Blocks 5–6 (paired t-test, t(54) = 0.72,
p = .47). Participants pressed significantly more times in Block 8
compared to Block 7 and Blocks 5–6 (paired t-test, Block 7:
t(54) = 4.5, p < .0001; Blocks 5–6: t(54) = 5.3, p < .0001), repli-
cating results from in-lab participants (Figure 2C).
In the second stage of Block 8 (Figure 5B), there was a main effect

of error type (1-way repeated measure ANOVA, F(2, 108) = 62,
p < .0001). The “option transfer” errors were significantly more
frequent than the “other” type errors (paired t-test, t(54) = 4.7,
p < .0001), and the “other” type was significantly more frequent
than the “f-choice” type (paired t-test, t(54) = 6.7, p < .0001). This
also replicates the error type profile of in-lab participants.
For the probability of correct choice in the first press (Figure 5C),

we also found participants were performing significantly above
chance in the second stage of Blocks 3–4, Blocks 5–6, and Block
7 (sign test, Blocks 3–4: p = .001; Blocks 5–6: p = .003; Block 7:
p = .001), but not significantly different from chance in Block 8
(sign test, p = .18). There was also no significant difference
between Block 7 and Blocks 5–6 (sign test, p = 1). This supported
the previous finding that participants used temporally extendedMOs
to explore in a new context.
We did not replicate the negative transfer in the first stage

of Block 7 (Supplementary Figure S8B) shown in in-lab partici-
pants (Figure 2C). There was no main effect of block on the number
of presses (1-way repeated measure ANOVA, F(2, 108) = 0.19,
p = .83). Mturk participants did not press significantly more times
in the first stage of Block 7 than Block 8 or Blocks 5–6 (paired t-test,
Block 7: t(54) = 0.30, p = .77; Blocks 5–6: t(54) = 0.32, p = .75).
This is potentially due to the lack of motivation among Mturk
participants to exploit structure in the first stage, since participants
did not receive points for being correct in the first stage. On the other
hand, participants received points for choices in the second stage,

which, as indicated by the Mturk experiment instruction, would
impact their bonus. This might explain why the transfer effects in the
first stage did not replicate, but the second stage transfer did. Note
that in this case, the absence of transfer allowed the Mturk parti-
cipants to make fewer errors in Block 7 than they might otherwise,
highlighting the fact that engaging in a cognitive task and building
and using structure is not always beneficial.

The Option Model was able to account for Experiment 1 Mturk
data, despite the lack of transfer in the first stage, by assuming either
a faster forgetting of HOs (higher f1) or a lower prior for reusing
previously learned HO policies (higher γ1, Supplementary Table 1).
Indeed, simulations reproduced the lack of transfer in the first stage
(Supplementary Figure S8B), and also captured all option transfer
effects demonstrated by Mturk participants in the second stage
(Figure 5).

We conclude that, in the Mturk sample, similar to the in-lab
sample, we successfully replicated the main option transfer effects in
the second stage due to selecting a temporally-extended policy MO
as a whole. This is reflected by number of presses, proportion of
error types in Block 8, and the probability of correct choice in the
first press (Figure 5). While we did not replicate transfer of high-
level options (task-sets of options), this could be accommodated by
the model, and understood as a lack of motivation at learning the
highest level of hierarchy HO.

Experiment 2

Experiment 2 was administered to UCB undergraduates in
exchange for course credit. 31 (21 females; age: mean = 20.2,
sd = 1.8, min = 18.3, max = 26.3) UCB undergraduates partici-
pated in Experiment 2. Four participants in Experiment 2 were
excluded due to incomplete data or below chance performance,
resulting in 27 participants for data analysis.

Experiment 2 Protocol

Experiment 1’s Block 8 comes after a first testing block that
includes re-composing of previous options, which could interfere

Figure 5
Experiment 1 Mturk Results

Note. (A) Average number of key presses for the first 10 trials of Blocks 5–8 for the second stage for participants (left) and the OptionModel (right). (B) Error
type analysis of the second stage in Block 8 for participants (left) and the Option Model (right). We replicated the same pattern as the in-lab population
(Figure 3B). (C) Probability of a correct first key press for the second stage of the first trial of each of the four branches in Blocks 7–8 for participants (left) and
the Option Model (right). See the online article for the color version of this figure.
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with our interpretation of positive and negative transfer results in
Block 8, for example by making participants aware of the potential
for structure transfer. In Experiment 2, we removed Block 7 of
Experiment 1 to eliminate this potential interference (Figure 6A).
Therefore, Block 7 in Experiment 2 was identical to Block 8 in
Experiment 1. In addition, to limit experiment length and loss of
motivation at asymptote in each block, we decreased the length of
Blocks 3–7 to 32 trials each, with each first stage stimulus leading to
each second stage stimulus eight times. All other aspects were
identical to Experiment 1.

Experiment 2 Results

Second Stage Choices Replicate Option Transfer

Participants were able to learn the correct actions in both the first
and second stages and their performance improved over Blocks 1–6
(Supplementary Figure S9A). The within-block learning curves also
showed that participants performance improved and then reached

asymptote as they progressed within a block (Supplementary
Figure S19).

We replicated the negative transfer effects in the second stage of
Experiment 1 (Figure 2C) both in terms of number of presses
(Figure 6B) and error types in Block 7 (Figure 6C). Participants
pressed significantly more times in the second stage of Block 7
compared to Blocks 5–6 (paired t-test, t(25) = 6.4, p < .0001). In
Block 7 specifically, there was a main effect of error type (1-way
repeated measure ANOVA, F(2, 50) = 30, p < .0001). The pro-
portion of the error type “option transfer” was significantly higher
than the error type “other” (paired t-test, t(25) = 3.2, p = .004).

We also observed transfer effects on the first press in the second
stage (Figure 6D). We found that the probability of a correct choice
was significantly above chance in Blocks 3–4 and Blocks 5–6 (sign
test, Blocks 3–4: p = .0094; Blocks 5–6: p < .0001), and signifi-
cantly below chance in Block 7 (sign test, p < .0001). This repli-
cates results in Blocks 3–6 and 8 in Experiment 1 (Figure 3C). The
Option Model could quantitatively reproduce all these transfer
effects (Figure 6B–D).

Figure 6
Experiment 2 Protocol and Results

Note. (A) To eliminate potential interference of Block 7 on Block 8 in Experiment 1, Block 7 of Experiment 1 was removed in Experiment 2.
Therefore, Block 7 in Experiment 2 was identical to Block 8 in Experiment 1. (B) Average number of key presses for the first 10 trials of Blocks
5–7 for the second stage for participants (left) and the OptionModel (right). (C) Error type analysis of the second stage in Block 7 for participants
(left) and the Option Model (right). We replicated the same pattern as in Block 8 of Experiment 1 (Figure 3C, Figure 5B). (D) Probability of a
correct first key press for the second stage of the first trial of each of the four branches in Blocks 5–7 for participants (left) and the Option Model
(right). See the online article for the color version of this figure.
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Second Stage Choices in Block 7 Reveal Interaction
Between Meta-Learning and Option Transfer

Because there was no Block 7 from Experiment 1, we had a less
interfered test of negative transfer in the second stage of Block 7 of
Experiment 2. Therefore, we further broke down the second stage
choice types for each of the four branches in the second stage of
Block 7 in Experiment 2 (Figure 7A). Consider (Figure 2A) the two
first stage stimuli as F1 (circle) and F2 (square), and the two second
stage stimuli as S1 (diamond) and S2 (triangle). We found a main
effect of error type on proportion of errors and a marginally
significant interaction between branch and error type (2-way
repeated measure ANOVA, error type: F(2, 36) = 20, p < .0001;
interaction: F(6, 108) = 2.1, p = .055). Specifically, we found the
error type profile in Figure 6C was mainly contributed by F1 → S1,
that is, circle in the first stage followed by diamond in the second
stage, and F2 → S2 (paired t-test, F1 → S1: t(23) = 2.7, p = .013;
F2 → S2: t(23) = 3.1, p = .005). On the other hand, there was no
significant difference between the “option transfer” and “other”
error types for F1 → S2 and F2 → S1 (paired t-test, F1 → S2:
t(22) = 0.9, p = .38; F2 → S1: t(22) = 0.81, p = .43). It is striking
that this highly non-intuitive result is perfectly predicted by the
Option Model (Figure 7B).

The Option Model offers an explanation as the interaction
between option transfer and meta-learning (Figure 7C). Meta-
learning discourages participants from selecting second-stage
actions that repeat the correct first-stage action, and as such, discour-
age them from sampling some, but not other LOs (e.g., LO2 in the
example of Figure 7C). This interference in the exploration of
potential LOs leads to some transfer errors being more likely, in
an asymmetrical way.

Influence of the Second Stage on the First Stage

For the first stage choices (Supplementary Figure S9B), we found
that participants pressed significantly more times in the first 10 trials
of Block 7 compared to Blocks 5–6 (paired t-test, t(25) = 2.4,
p = .024). This effect was not found in Experiment 1 between Block
8 and Blocks 5–6 (Figure 2C), and was not predicted by the model.

One potential explanation for this surprising result is that the
error signals in the second stage propagated back to the first stage.
Specifically, the errors participants made by selecting the wrong
LO in the second stage are credited to the chosen LOs policy, but
participants might also credit these errors to using the wrong HO
in the first stage. Going back to our example, if your meal is not
tasty, it might not be because you roasted the potatoes instead of

Figure 7
Experiment 2 Second Stage Choice Shows Interaction Between Option Transfer and Meta Learning

Note. Error type analysis for each of the four branches in the second stage of Block 8 for participants (A) and the OptionModel
(B). The option transfer error was more than other error only for F1 → S1 and F2 → S2, which was predicted by the Option
Model. (C) Example schematic for the interaction: learning A2 for the diamond activates LO3; learning A3 for the triangle
activates LO2; meta-learning only suppresses LO2 but not LO3. See the online article for the color version of this figure.
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boiling them, but it might be because you wanted meat instead of
potatoes in the first place. To test this explanation, we further
probed choice types in the first stage of Experiment 2
(Supplementary Figure S10). Indeed, we found significantly
more “wrong HO” errors in Block 7, compared to Blocks 5–6
(paired t-test, p = .045). Therefore, the increase in number of key
presses in the first stage of Block 7 was mainly contributed by
more “wrong HO” errors, indicating that participants explored
another high-level option (making carrots). The same effect was
not seen in the first stage of Experiment 1 between Block 8 and
Blocks 5–6 (Figure 2C), potentially due to the interference of
Block 7 in Experiment 1.
The Option Model could not capture this effect, since the

selection of HO was only affected by learning in the first stage
(Computational Modeling section), as a way of simplifying credit
assignment (see Termination Function section for a more detailed
discussion on credit assignment). This will be a target for future
model improvements.

Experiment 3

Experiment 3 was administered to UCB undergraduates in
exchange for course credit. 35 (22 females; age: mean = 20.5,
sd = 2.5, min = 18, max = 30) UCB undergraduates participated
in Experiment 3. Ten participants in Experiment 3 were excluded
due to incomplete data or below chance performance, resulting in 25
participants for data analysis.
An additional 65 (37 female; see age range distribution in

Supplementary Table 3) Mturk participants finished the experiment.
34 participants were further excluded due to poor performance,
resulting in 31 participants for data analysis (62 of these 65
participants were above chance in the second stage, but only 32
were above chance in the first stage, so Mturk participants were
mostly excluded due to performance in the first stage; see Data
Analysis section for more details).

Experiment 3 In-Lab Protocol

In Experiment 1, to perform well in the second stage, partici-
pants had to learn option-specific policies, due to the non-
Markovian nature of the task (the correct action for the same
second stage stimulus was dependent on the first stage stimulus). In
Experiment 3, we removed this non-Markovian feature of the
protocol and tested whether the removal would reduce or eliminate
option transfer. Based on previous research on task-sets showing
that participants build structure when it is not needed (Collins
et al., 2014; Collins & Frank, 2016b), we predicted that partici-
pants might still show some evidence of transfer. However, we
predicted that any evidence of transfer would be weaker than in
previous experiments.
In Experiment 3, the second stage stimuli following the two first

stage stimuli were different (Figure 8A). This eliminated the key
non-Markovian feature from Experiment 1, since participants could
simply learn the correct key for each of the four second stage stimuli
individually without learning option-specific policies. Blocks 1 and
2 had 60 trials; we shortened Blocks 3–8 to 32 trials for the same
reason as in Experiment 2. All other aspects of the protocol were
identical to Experiment 1.

Experiment 3 Mturk Protocol

In the Mturk version, Blocks 1 and 2 had a minimum of 32 and a
maximum of 60 trials, but participants moved on to the next block as
soon as they reached a criterion of less than 1.5 key presses per
second stage trial in the last 10 trials (the 31 Mturk participants
included for data analysis on average used 36 (sd = 7,median = 32,
min = 32,max = 60) trials in Block 1 and 35 (sd = 4,median = 32,
min = 32, max = 59) trials in Block 2). Blocks 3–8 all had 32 trials
each. Experiment 3 MTurk was thus perfectly comparable to Exper-
iment 1 MTurk in terms of trial numbers, as such, we focus
first on MTurk results, since the same comparison could not be
drawn between Experiments 1 and 3 for in-lab participants.

Experiment 3 Results

Mturk Participants Show Weak Evidence of Options

Mturk participants were able to learn the correct actions in both
the first and second stages, and their performance improved
over Blocks 1–6 (Supplementary Figure S11A). The within-block
learning curves also showed that participants performance improved
and then reached asymptote as they progressed within a block
(Supplementary Figure S20).

We first analyzed the average number of key presses in the first 10
trials of each block and stage. For the first stage (Supplementary
Figure S12), we found no effect of block on number of presses
across Blocks 5–8 (1-way repeated measure ANOVA, F(2,
60) = 0.13, p = .88), as in Experiment 1 MTurk. For the critical
second stage (Supplementary Figure S11B), there was a main effect
of Block (1-way repeated measure ANOVA, F(2, 60) = 3.3,
p = .043). Specifically, there was no significant difference between
Block 7 and Blocks 5–6 (paired t-test, t(30) = 0.25, p = .81).
Participants pressed significantly more times in Block 8 than in
Block 7 and Blocks 5–6 (paired t-test, Block 7: t(30) = 2.1,
p = .048; Blocks 5–6: t(30) = 2.2, p = .036).

The negative transfer effect observed in the first stage of Block
7 in Experiment 1 (Figure 2C) was not present here in Experiment 3
(Supplementary Figure S12). In addition to the fact that the first
stage was never explicitly rewarded, as in Experiment 1, participants
in Experiment 3 were even less motivated to exploit structure in the
first stage. This is because the first stage in Experiment 3 was not
necessary for resolving the second stage actions (Figure 8A), while
the non-Markovian aspect of Experiment 1 (Figure 2A) forced
participants to incorporate first stage information to resolve the
correct choice for the second stage.

We calculated the proportion of error types in the second stage of
Block 8 (Figure 8B). Unlike in Experiment 1, we did not observe
significantly more “option transfer” error than “other” error (paired
t-test, t(30) = 1.6, p = .11). This choice type profile, compared to
that in Experiment 1 and Experiment 2 (Figure 3B, Figure 5B,
Figure 6C), suggests a lack of option transfer in the second stage.

We also calculated the probability of a correct second stage first
press for each of the four branches in the second stage (Figure 8C).
The probability was significantly above chance in Blocks 3–4 and
Blocks 5–6 (sign test, Blocks 3–4: p = .0002; Blocks 5–6:
p < .0001). It was marginally above chance in Block 7 (sign
test, p = .07) and not significantly different from chance in Block
8 (sign test, p = 1). Compared to the results in Experiment 1
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(Figure 3C, Figure 5C), these results suggest participants were still
taking advantage of previously learned options to speed up learning
at the beginning of each block, but potentially to a lesser extent
compared to Experiment 1 and Experiment 2.
To formally quantify the effect of the experimental manipulation,

we compared Experiment 1 and Experiment 3 for Mturk partici-
pants. In particular, we compared the proportion of “option transfer”
and “other” error types in the second stage of Block 8 between the
two experiments (Figure 8D). We found a main effect of error type
(2-way mixed ANOVA, F(2, 168) = 76, p < .0001), but there was
no interaction between experiment and error type (2-way mixed
ANOVA, F(2, 168) = 0.89, p = .41). In particular, the proportion
of “option transfer” error type was not significantly higher in
Experiment 1, compared to that in Experiment 3 (unpaired t-test,
t(84) = 1, p = .32). This further shows that while there might be a
lack of option transfer in the second stage of Block 8 based on the
error type profile (Figure 8B), learning might still not be completely
flat in Experiment 3 (Supplementary Figure S11B).

The Option Model could capture the lack of option transfer
(Figure 8BC), with an increase in the second stage clustering
coefficient γ2, which controls how likely the model is to select a
new blank policy compared to previously learned LOs in the second
stage, as well as the forgetting parameter in the second stage, f2,
which increases the speed at which the model forgets previously
learned LO (Supplementary Table 1).

In-Lab Participants Replicate Results From Mturk
Participants

In-lab participants replicated all aforementioned trends shown in
Mturk participants (Supplementary Figure S13). In particular, there
was a main effect of block on number of choices in the second stage
(F(2, 46) = 7.2, p = .002). In-lab participants also pressed signifi-
cantly more times in the second stage of Block 8 than Blocks 5–6
(paired t-test, t(23) = 3.6, p = .0017), but only marginally more
than Block 7 (paired t-test, t(23) = 1.9, p = .067). Moreover,

Figure 8
Experiment 3 Protocol and Mturk Results

Note. (A) The second stage stimuli following each first stage stimuli were different: for example, diamond and triangle followed circle; hexagon
and star followed square. All state-action assignments remained the same as Experiment 1. This manipulation allowed us to test whether
participants would naturally learn and transfer options in the second stage even when they could simply learn the correct key for each of the four
second stage stimuli individually, rather than needing to take into account first stage information. (B) Error type analysis of the second stage in
Block 8 for participants (left) and the Option Model (right). For Mturk participants, the proportion of option transfer error was not significantly
different from other error, unlike Experiment 1 and Experiment 2, suggesting a lack of option transfer. (C) Probability of a correct first key press
for the second stage of the first trial of each of the four branches in Blocks 7–8 for participants (left) and the OptionModel (right). (D) Comparison
of Experiment 1Mturk and Experiment 3Mturk participants in terms of error types in the second stage of Block 8: There was no significant effect
of experimental condition. See the online article for the color version of this figure.
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similar to Mturk participants, the proportion of “option transfer”
error type was not significantly different from “other” error type
(paired t-test, t(23) = 0.8, p = .43). These results replicated a lack
of option transfer in the second stage in a separate in-lab population.
Note that we could not do the same comparison between Experiment
1 and Experiment 3 for in-lab participants, because the number of
trials per block for Experiment 1 and Experiment 3 was different
in-lab.

Experiment 4

Experiment 4 was administered to UCB undergraduates in
exchange for course credit. 31 (23 females; age: mean = 20.2,
sd = 1.4, min = 18, max = 23) UCB undergraduates participated
in Experiment 4. Twelve participants were excluded due to incom-
plete data or below chance performance, resulting in 19 participants
for data analysis.
An additional 110 (50 females; see age range distribution in

Supplementary Table 3) Mturk participants finished the experiment.
49 participants were excluded due to poor performance, resulting in
61 participants for data analysis (106 of the 110 participants were
above chance in the second stage, but only 61 were above chance in
the first stage; thus most Mturk participants were excluded by
performance criterion in the first stage; see Data Analysis section
for more details).

Experiment 4 In-Lab Protocol

Experiment 4 (Figure 9A) was designed to test whether partici-
pants were able to compose options learned separately, for example
by expanding a low-level option’s initiation set and selecting it as
part of a new mid and high-level option. Specifically, the protocol
was identical to Experiment 1, except for Blocks 7 and 8. Block 8 in
Experiment 4 was similar to Block 8 in Experiment 1, introducing
two new LOs (LOnew) at the second stage as a benchmark for pure
negative transfer.
The main difference between Experiment 4 and Experiment 1 was

Block 7. In Block 7, one of the first stage stimuli (e.g., square)
elicited the same extended policy MO2 (A2 followed by LO2 in the
second stage), allowing positive MO transfer (“match” condition
LOmatch). In contrast, the other first stage stimulus (e.g., circle)
elicited a new policy recomposed of old subpolicies: participants
needed to combine what they learned in the first stage of MO1 in
Blocks 1, 3, and 5 (A1) (allowing for first stage transfer of HO1), and
the second stage of Blocks 2, 4, and 6 (LO3; “mismatch” condition
LOmismatch). Extending the food analogy, in Blocks 1, 3, 5, parti-
cipants learned to make potatoes (MO1) by cutting potatoes (the first
stage) and then roasting (LO1). In Block 7, participants also needed
to cut potatoes, but then steam them (LO3), which was already
learned as part of MO3 (make carrots) in Blocks 2, 4, 6. All blocks
had 60 trials each.

Experiment 4 Mturk Protocol

The Mturk version was shortened for online workers. Blocks 1
and 2 had a minimum of 32 and a maximum of 60 trials, but
participants moved on to the next block as soon as they reached a
criterion of less than 1.5 key presses per second stage trial in the last
10 trials (the 61 Mturk participants included for data analysis on

average used 46 (sd = 11, median = 42, min = 32, max = 60)
trials in Block 1 and 43 (sd = 11, median = 38, min = 32, max =
60) trials in Block 2). All other blocks had 32 trials each.

Experiment 4 Results

Mismatch Impacted Performance of In-Lab Participants

Participants’ performance improved over Blocks 1–6 (Supple-
mentary Figure S14A) and within each block (Supplementary
Figure S22). To test more specifically whether participants were
able to compose options, we focused on comparing the second stage
behavior for old LOs (LOmatch and LOmismatch) and the average of
LO5 and LO6 (LOnew) in Blocks 7–8. The Option Model predicted
that performance for LOmatch in Block 7 should be the best due to
positive transfer, since participants should have learned the
extended MO2 policy whereby LO2 followed A2 in Blocks 1, 3,
and 5 (Figure 9A). LOnew should be the worst due to negative
transfer, with all four stimulus-action assignments in the second
stage novel. Performance for LOmismatch in Block 7 should fall in
between (as observed in the number of key pressed, Figure 9B1).
While there should be negative transfer, as MO1 was usually
followed by LO1, LO3 had been previously learned, so its perfor-
mance should still surpass the performance in the second stage of
Block 8, where LO5 and LO6 were completely novel to the
participants. Therefore, we predicted LOmatch > LOmismatch >
LOnew in terms of performance.

In the second stage (Figure 9B1), there was a main effect of
block on number of presses (1-way repeated measure ANOVA,
F(2, 36) = 9.9, p = .0004). Specifically, the average number of key
presses in LOnew (Block 8) was significantly more than Blocks 5–6
and LOmatch (paired t-test, Blocks 5–6: t(18) = 4.1, p = .0007;
LOmatch: t(18) = 3.6, p = .002). There was no significant difference
between Blocks 5–6 and LOmatch (paired t-test, t(18) = 0.7,
p = .49), supporting the model’s prediction of positive MO transfer
in this condition. The model predicted that LOmismatch performance
should be between LOnew and LOmatch: LOmismatch performance
should reflect positive LO transfer but negativeMO transfer. Indeed,
we observed a significant effect of LO condition on performance
(1-way repeated ANOVA, F(2, 36) = 5, p = .01), driven by the
predicted qualitative pattern. However, the paired comparisons were
not significant (paired t-test, LOmatch: t(18) = 1.6, p = .13; LOnew:
t(18) = 1.4, p = .18). These results replicate the negative transfer
effects in the second stage of Block 8 shown in Experiment 1
(Figure 2C) and Experiment 2 (Figure 6B). In addition, they pro-
vide initial support for the compositionality hypothesis of the
model, with intermediary transfer in the mismatch condition.

We confirmed the previous results by analyzing the proportion of
trials in which the first key press was correct. We found that, in the
first three trials for each of the four branches in the second stage
(Figure 9B2), there was a main effect of LO condition (1-way
repeated measure ANOVA, F(2, 36) = 7.2, p = .002) on the pro-
portion of correct choices for the first press of each trial. In
particular, we found no significant difference between LOmismatch

and LOnew (paired t-test, t(18) = 0.56, p = .58), while the perfor-
mance of LOmatch was significantly higher than LOmismatch and
LOnew (paired t-test, LOmismatch: t(18) = 2.6, p = .017; LOnew:
t(18) = 4.4, p = .0003). These results suggested that the mismatch
between MO1 and LO3 impacted participants’ performance, a
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marker of negative option (MO) transfer. The first three iterations
indicated that participants were not able to efficiently re-compose
the LOmismatch into a new mid-level option.
To better investigate participants’ choices before they experi-

enced any new information in a new block, we also computed the
probability of a correct first key press for the second stage of the first
trial of each of the four branches in the Blocks 5–8 (Figure 9B4).We
found a main effect of block (Friedman Test, χ2(2, 36) = 20,
p < .0001). Specifically, Blocks 5–6 and LOmatch were significantly
above chance (sign test, both p < .0001); LOmismatch was not
significantly different from chance (sign test, p = .34); LOnew

was significantly below chance (sign test, p = .0007). There was
a marginal difference between LOmatch and LOmismatch (sign test,
p = .09), but no significant difference between LOmismatch and
LOnew (sign test, p = .24). These results further showed that the
mismatch condition impacted participants’ performance on the first
press due to negative option (MO) transfer, and replicated the
strong negative transfer in Block 8 in Experiment 1 and Experiment
2. The Option Model captured participants’ behavior well (Figure 9
B1, 2, 4, see Supplementary Table 1 for model parameters).

Second Press Reveals Benefit of Option Composition

The results so far supported one of our predictions, LOmatch >
LOmismatch, by showing that performance in the mismatch condition
was impacted due to negative MO transfer. We next sought evi-
dence for our second prediction, LOmismatch > LOnew, where we

hypothesized better performance in the mismatch condition by
composing the first stage policy of MO1 and LO3.

In terms of performance on the first press in each trial, we did not
find a significant difference between the two conditions
(Figure 9B2). However, this might be because the negative MO
transfer reduced the benefit of compositionality, making it less
detectable on the first press, also reflected by the small effect
from the Option Model in Figure 9B2. Positive LO transfer thus
might only show a more significant effect after the first press
unexpectedly failed (from negative transfer of MO1).

Therefore, we further computed the proportion of correct choices
on the second press in those trials where the first press was incorrect
(Figure 9B3). Indeed, we found that the proportion of correct
choices on the second press was significantly higher in the mismatch
condition than the new condition (paired t-test, t(17) = 2.8,
p = .012). This result supports our second prediction, LOmismatch >
LOnew, revealing a benefit in the mismatch condition compared to
the new condition in participants re-composing an old LO into a
non-matching MO.

Mturk Participants Showed Benefits of Option Composition

We collected a larger and independent sample on Mturk. Mturk
participants also improved over Blocks 1–6 (Supplementary Figure
S14B) and within block (Supplementary Figure S23), though their
asymptotic performance (Blocks 5–6) was lower than the in-lab
population. Specifically, we compared the average number of key
presses in Blocks 5–6 in the first and second stages for both in-lab

Figure 9
Experiment 4 Protocol and Results

Note. (A) Experiment 4 design. In Experiment 4, we tested participants’ ability to recompose LO policies within MO policies. Blocks 1–6 were identical to
Experiment 1. In Block 7, green indicates positions of potential positive transfer: MO2 followed by LO2 was learned in Blocks 1, 3, 5. Orange indicates
positions of option composition: although MO1 previously included LO1 for second stage stimuli, it was modified to LO3 in Block 7. In Block 8, red indicates
positions of negative transfer: LO5 and LO6 were completely novel to participants. Blocks were color coded for later analysis: Blocks 1–4 gray; Blocks 5–6
purple; Block 7 orange; Block 8 blue. (B) Second stage behavioral results. (1) Average number of key presses for the first three trials for each of the four
branches in the second stage of Blocks 5–8 for participants (left) and the Option Model (right). Block 7 was split into LOmatch and LOmismatch; Block 8
corresponded to LOnew. (2) Proportion of correct choices on the first press of Trials 1–3 for each of the four branches in the second stage for LOmatch, LOmismatch

and LOnew for participants (left) and the OptionModel (right). (3) Proportion of correct choices on the second press (for Trials 1–3 for each of the four branches
with an incorrect first key press) for the mismatch (left) and the new (right) condition. (4) Probability of a correct first key press for the second stage of the first
trial of each of the four branches in Blocks 5–8 for participants (left) and the Option Model (right). (5)–(8) Same as (1)–(4) for Mturk participants. See the
online article for the color version of this figure.
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and Mturk populations. There was a main effect of stage and a
marginal interaction of population and stage (2-way mixed
ANOVA, stage: F(1, 78) = 7.1, p = .009; interaction: F(1, 78) =
3.1, p = .08). In particular, for the first stage, Mturk population was
not significantly worse than the in-lab population (unpaired t-test,
t(78) =0.17, p = .86); but for the second stage, which was the focus
of our analysis, Mturk population was significantly worse than the
in-lab population (unpaired t-test, t(76) = 3.2, p = .002).
In the second stage (Figure 9B5), there was a main effect of block

on number of presses (1-way repeated measure ANOVA, F(2,
120) = 17, p < .0001). Specifically, the average number of key
presses in LOnew was significantly more than LOmatch

and LOmismatch (paired t-test, LOmatch: t(60) = 4.6, p < .0001;
LOmismatch: t(60) = 3.8, p = .0004). LOmatch was not significantly
different from Blocks 5–6 and LOmismatch (paired t-test, Blocks 5–6:
t(60) = 0.26, p = .8; LOmismatch: t(60) = 0.8, p = .42).
The proportion of correct first press choices (Figure 9B6) showed

a similar pattern: there was a main effect of LO condition (1-way
repeated measure ANOVA, F(2, 120) = 15, p < .0001) on the
proportion of correct choices. In particular, the proportion of correct
choice for LOnew was significantly lower than LOmismatch and
LOmatch (paired t-test, LOmismatch: t(60) = 4.7, p < .0001; LOmatch:
t(60) = 5.1, p < .0001) in Block 7. There was no significant
difference between LOmismatch and LOmatch performance (paired
t-test, t(60) = 0.54, p = .59). There was no difference between the
mismatch condition and the new condition for second key presses
(paired t-test, t(52) = 0.08, p = .94, Figure 9B7), contrary to in-lab
participants (Figure 9B3). This difference could be attributed to
MTurk participants’ lower task engagement. Indeed, contrary to in
lab participants, MTurk participants’ performance was at chance for
second key press (paired t-test against 0.5, Mturk: t(53) = 1.6,
p = .13; in-lab: t(17) = 3.4, p = .003). Directly comparing MTurk
and in-lab population for the proportion of correct second key press
in both the mismatch and new conditions revealed a marginal effect
of condition and a marginal interaction of population and condition
(2-way mixed ANOVA, condition: F(1, 69) = 3.3, p = .07; inter-
action: F(1, 69) = 3.7, p = .06). This supports our interpretation
that MTurk participants did not attempt to find the correct answer
following an error, making the second press error analysis in this
population difficult to interpret.
Finally, we looked at the probability of a correct first press in the

very first trial of each of the four branches in the second stage
(Figure 9B8). There was a main effect of block (Friedman test, χ2(2,
120) = 17, p = .0002). In particular, Blocks 5–6 and LOmismatch

were significantly above chance (sign test, both p = .004); LOmatch

was marginally above chance (sign test, p = .07); LOnew was
significantly below chance (sign test, p < .0001).
These results can be interpreted in one of two ways. The similar

performance between LOmatch and LOmismatch suggests that parti-
cipants were able to efficiently re-compose the first stage of MO1

with LO3 in the mismatch condition in Block 7, so that they did not
suffer from MO negative transfer, as did in-lab participants. Alter-
natively, this result might indicate a lack of MO transfer (and only
positive LO transfer) in both the match and mismatch condition. The
latter interpretation is supported by the fact that second stage perfor-
mance in LOmatch was lower in MTurk participants than it was for in-
lab participants in all measures (unpaired t-test, number of key presses
in the first 10 trials of Blocks 5–6: t(78) = 1.8, p = .08; proportion
of correct choices in match condition: t(78) = 2.4, p = .019).

The Option Model could capture the negative transfer effect in
LOnew and thus the difference between LOnew and LOmismatch

(Figure 9B5, 6). However, it could not fully reproduce the lack
of difference between LOmatch and LOmismatch, since the model
would first try to transfer LO1 in the mismatch condition, resulting in
worse performance for LOmismatch. One possibility for this discrep-
ancy might be that Mturk participants did not learn or transfer MO
well, reflected by their overall worse performance in the second
stage compared to in-lab participants (Figure 9B).

This interpretation might suggest that the Task-Set Model ex-
plains the Mturk population better, indicating a lack of temporally
extended options, and makes a specific prediction: Second stage
errors should not be impacted by first stage information. To test this
prediction, we analyzed the specific errors participants made, as this
is a hallmark of temporally extended option transfer versus task-sets
(Figure 3B). Contrary to the prediction made by the Task-Set
model, but consistent with the Option Model prediction, Mturk
participants did demonstrate the behavioral signature of negative
option (MO) transfer in the mismatch condition (Supplementary
Figure S15): They made significantly more “option transfer” errors
than “other” errors (paired t-test, t(53) = 4.8, p < .0001). While the
comparison was not significant for in-lab participants (paired t-test,
t(17) = 1.5, p = .16), a direct comparison between in-lab and
Mturk populations did not reveal an effect of population (2-way
mixed ANOVA, F(2, 140) = 0.74, p = .48), but did reveal an effect
of error type (2-way mixed ANOVA, F(2, 140) = 39, p < .0001).
Thus, our results indicate that both MTurk participants and in-lab
participants used temporally-extended MOs, although MTurk par-
ticipants were overall less successful at transferring them to facilitate
decision making in the second stage. The results are consistent with
participants re-composing low-level options into higher-level
options.

Discussion

Our findings provide novel insight into how humans learn hierar-
chical representations that can be composed for flexible generaliza-
tion. They offer strong support for the acquisition of option-like
representations in healthy human adults. Options can be thought of
as choices that are more abstract, complex, and extended than simple
motor actions, but can similarly be selected in a single decision.
Using a novel two-stage protocol, we provide evidence that humans
create multi-step policies that can be selected as a whole (options),
and flexibly transfer and compose previously learned options. This
transfer and composition ability guides exploration in novel contexts
and speeds up learning when the options are appropriate, but impairs
performance otherwise, as predicted by the options framework
(Botvinick et al., 2009). Model simulations showed that only a
model including temporal hierarchy could account for all results,
suggesting that human participants not only build state abstractions
with one-step task-sets (Monsell, 2003), but also temporal abstrac-
tions in the action space with multi-step options.

The Option Model

We developed a new model, the Option Model, to account for
participants’ behavior. The OptionModel includes features from our
previous hierarchical structure learning model (Collins et al., 2014;
Collins & Frank, 2013, 2016a) and the hierarchical reinforcement
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learning (HRL) options framework (Sutton et al., 1999). In our
previous hierarchical structure learning model, we used non-
parametric priors (Chinese restaurant Process, or CRP; Pitman,
2006) over latent variables that represented the currently valid
policy to create state abstractions: This allowed the model to cluster
different contexts together if the same task-set applied. This CRP
prior enables the agent to identify (via Bayesian inference) novel
contexts as part of an existing cluster if the cluster-defined task-set
proves successful, resulting in more efficient exploration and faster
learning.
On the other hand, the original formulation of the HRL options

framework (Sutton et al., 1999) augments the action space of tradi-
tional flat RL with temporal abstractions called options. Each option
is characterized by an initiation set that specifies in which states the
option can be activated, a termination function that maps states to a
probability of terminating the current option, and an option-specific
policy (that leads the agent to a potentially meaningful and useful
subgoal). Multi-step options allow even more efficient transfer than
task-sets, which can be thought of as simpler one-step options.
Our OptionModel is inspired by the fact that task-sets and options

are similar in essentials: they are policies that an agent can select as a
whole, and then apply at a lower level of abstraction (applying it to
make a motor choice in response to a stimulus for task-sets, or
applying it across time until termination in the case of an option
(Collins, 2018)). Thus, our model brings together state and temporal
abstractions by using option-specific CRP priors to implement
option-specific policies that can be flexibly selected in different
contexts if they share the same environmental contingencies. Our
model captures the essence of the options framework despite some
subtle differences. Here, we further discuss how our Option Model
relates to each part of the HRL options framework.

Option-Specific Policy

The most important component of an option is the option-specific
policy: What lower level-choices (either simpler options or basic
actions) it constrains. In this article, we focused on the transfer of
option-specific policy to test theoretical benefits of the options
framework.
Theoretical work (Botvinick et al., 2009) suggested that useful

options should facilitate exploration and speed up learning. Indeed,
we observed speed up in learning through the positive transfer
effects. For example, in Experiment 1, the second stage of Block 7
provided a test of positive option transfer in terms of choice types
(Supplementary Figure S6). Importantly, this positive transfer was
not interfered by the negative transfer in its first stage (Figure 2C),
suggesting that participants transferred mid-level options (MO) as a
whole. Moreover, the learning benefit was evident even in the first
press (Figure 3C, Figure 5C, Figure 6D): participants were already
significantly above chance in the first press, indicating that they
could explore more efficiently by immediately transferring previ-
ously learned options.
Previously learned option-specific policies also helped with

option composition in the mismatch condition of Experiment 4
(Figure 9). While MO1 was usually followed by LO1 in Blocks 1, 3,
5, in the mismatch condition,MO1was followed by LO3 instead. This
change indeed resulted in “option transfer” errors (Supplementary
Figure S15). However, the fact that LO3 had been previously learned
helped participants explore more efficiently. For example, once

participants figured out A2 was correct for the diamond, they would
more likely explore LO3, and thus A4 for triangle.

The HRL options framework also suggested that non-useful
options can slow down learning (Botvinick et al., 2009). Indeed,
we observed negative option transfer effects in the second stage
across multiple experiments in terms of number of presses (Figure 2C,
Figure 5A, Figure 6B, Figure 9B1, 5), and more importantly, error
types (Figure 3B, Figure 5B, Figure 6C, Figure 7, Supplementary
Figure S15), that are consistent with the predictions of the options
framework. Note that the slow down was due to negative transfer
of previously learned option-specific policies. Thus testing how
having a wrong subgoal can impact learning performance is an
interesting future direction.

We sought to confirm that participants were indeed learning
option-specific policies, not just action sequences. Our protocol
specifically used two second stage stimuli following each first stage
stimulus (Figure 2A) to avoid this potential confound. If, for
example, circle was always followed by diamond and square by
triangle, participants would not need to pay attention to the actual
stimulus in the second stage, and could instead plan a sequence
of actions in the first stage. In contrast, here, participants could
only perform well by selecting options (i.e., stimulus-dependent
temporally-extended policies). Indeed, we showed (Figure 3D) that
a sequence learning model would show ceiling performance at 1.5
presses per second-stage trials, while participants’ asymptotic per-
formance was significantly better than 1.5 presses across all datasets
(paired t-test, all p < .002, Supplementary Figure S16). While pure
sequence learning could not account for our results, we investigated
whether it could contribute to some of its aspects. Sequence learning
would predict faster reaction times for actions that often follow in a
sequence (Clegg et al., 1998). Therefore, we compared the reaction
time for the “sequence” and “non-sequence” error types in the
second stage. We did not find significant difference between the
reaction time for “sequence” and “non-sequence” error types at the
beginning of blocks; we only found such difference at the end of
blocks (see supplement for full details). This suggests that while the
transfer effects we observe at the beginning of each block could not
be explained by pure sequence learning, participants might develop
sequence learning-like expectations over time in a block, speeding up
choices that came more frequently after each other.

Initiation Set

The initiation set of an option specifies the set of states where the
option can be selected. The observable states in our tasks are the
shapes shown on the screen. Therefore, at first, the initiation sets of
HO andMOare first stage stimuli (e.g., circle and square, Figure 2A),
whereas the initiation sets of LO are second stage stimuli. However,
the optimal policies were also dependent on the block; thus partici-
pants needed to infer the latent states (state abstraction) dictated by
block. Our extension of classic options with a CRP prior inference
process over latent states can thus be thought of as continuously
adding new block contexts to the initiation set of an option throughout
the task. The ability to add new contexts to the initiation sets provides
our Option Model the crucial flexibility needed to achieve transfer
and composition, as demonstrated by human participants. For exam-
ple, if LO3 was tied solely to the context of Block 2, where it was first
learned, we would not observe the benefit of option composition in
Experiment 4 in the mismatch condition.
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Termination Function

An option’s termination function maps each state to the proba-
bility of terminating the current option (i.e., not using its policy
anymore). How to terminate an option is closely related to the
underlying theoretical question of credit assignment, which arises
naturally in tasks that require hierarchical reasoning (Sarafyazd &
Jazayeri, 2019): If the current policy does not generate any (pseudo-)
reward for a while, should the agent continue improving the current
policy or terminate it and use another policy or even something new?
With a termination function as described in the original HRL

options framework, credit assignment happens in a very specific
way: the policy of the currently selected option (or options if multiple
nested options are selected) is updated until termination is reached.
However, this would make behavior very inflexible. For example, in
our task, when an agent enters the second stage of Block 8 in
Experiment 1 (Figure 2A) for the first time after having correctly
made a choice for the circle in the first stage, the agent would likely
use LO1 due to negative transfer of MO1 and thus not receive reward.
Because the termination function only takes state as an input, the
agent would keep overwriting the LO1 policy with LO5 policy until
termination, and thus not be able to reuse LO1 down the line.
Thus, our Option Model, uses a more flexible form of option

termination. Specifically, we use Bayesian inference (Computa-
tional Modeling section), which was introduced in our previous
hierarchical structure learning model (Collins & Frank, 2013). At
the end of each choice, the model updates the likelihood of each
option being valid based on the observed reward feedback, which
then determines whether the model should stop using the current
option. Moreover, Q-learning only operates on the option that has
the highest posterior, thus assigning credit retrospectively to the best
cause (Moran et al., 2019). Therefore, the Option Model is more
likely to create a new LO5 and learn its policy from scratch, making
it more flexible at learning and selecting options. The crucial benefit
of our new Option Model termination policy is that the agent can
create a new LO5 and learn its policy from scratch, without
overwriting the original LO1 policy. While the Option Model can
capture participants’ choices well across all four experiments, the
current experimental protocol was not designed specifically to test
credit assignment to options. This remains an important question for
future research.
There is another credit assignment problem that is not fully

addressed by our current protocol and modeling: choices by lower
level options may affect the termination of higher level options. For
example, if you get punished for roasting potatoes, should you credit
this to the lower level option (roasting) or to the higher level option
(making potatoes) in the first place? Should you plan to cook meat
instead, or just boil the potatoes? We have some evidence for both
levels of credit assignment (e.g., in Block 7 of Experiment 2, or
Block 8 in Experiment 1; Figure 2C), when participants were
experiencing many errors in the second stage using LO1 and
LO2. Participants might not only consider terminating or re-learning
the current LO, but also naturally attribute some of the negative
feedback to the choices they made in the first stage regarding MO or
HO. Indeed, we observed that second stage errors potentially
resulted in more “wrong HO” errors in the first stage of Experiment
2 (Supplementary Figure S9B, Supplementary Figure S10).
In our Option Model (Computational Modeling section), for

simplicity, first stage choices were only determined by learning

within the first stage and were not sensitive to reward feedback in the
second stage. It will be important in future research to better
understand interactions between option levels for credit assignment.
When considered together with the termination problem, these
future directions may help trace the underlying neural mechanisms
for credit assignment in human learning and hierarchical decision
making.

Possible Extensions

We tested predictions of HRL options framework through posi-
tive and negative transfer of option-specific policies in the simplest
possible set up of tabular representation of state and action space.
Multiple aspects could be expanded on in future research to increase
the generalizability of the policy in real world scenarios.

First, real world policies apply to much more complex (continu-
ous, multidimensional) state spaces. Recent work in AI expands the
options framework to more realistic situations (Konidaris & Barto,
2007), where artificial agents learn how to navigate a sequence of
rooms with different shapes and sizes. If each state in a room is
naively parametrized in a tabular way by (x, y) coordinates, when
the agent is placed in a new room of a different shape, previously
learned policy would be of not use. It is thus crucial to identify
meaningful features of the state space shared by different rooms.
(Konidaris & Barto, 2007) proposed learning options in a state space
parametrized by distance from goals (“agent space”) to bypass this
limitation.

Second, the low-level action space in real life conditions is also
more complex. A good example is our flexible use of tools (Allen
et al., 2019). We can conceptualize using various tools as taking
actions. Humans demonstrate great flexibility when improvising
using different tools to solve the same problem or even crafting new
tools. If we simply represent actions in a tabular way, after parti-
cipants associated a particular tool (action) to solve a task, the policy
would be of no use if this particular tool is no longer provided in the
future. The key might again be figuring out meaningful dimensions
of the tool (action) space that are shared in different task scenarios,
such as shape and weight of the tool.

Finally, even if two problems are different in terms of both state
and action space (e.g., learning to play piano versus learning to play
violin (Franklin & Frank, 2018)), knowledge of one might still help
the other. Once one learned a piece on the piano, the knowledge of
music theory might serve as a model to guide option transfer when
learning the same piece on violin. These are important future
directions for testing how humans transfer in those more real life
scenarios, which might provide insight into developing more flexi-
ble and human-like AI systems with the HRL options framework.

Option Discovery

One of the most important questions regarding options in AI is
how to discover meaningful options. Discovering useful options
entails learning all components of an option: initiation set, termina-
tion function, and option-specific policy that leads to a meaningful
sub-goal. In this article, we designed a protocol that focused on
learning option-specific policies by making all other features,
including subgoals, trivial.

Discovering options may be useful because of a key feature of our
interactions with our environment. In real world scenarios, it is
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frequent that for a given observable state, the right choice to make
depends on hidden context, task demand, or past information. This
property is referred to as non-Markovian: The current observable
information is insufficient to determine the next step. For example,
when potatoes are peeled, we can use them to make either roasted
potatoes or mashed potatoes. Therefore, the state “peeled potatoes”
is a meaningful subgoal state, and peeling potatoes is its correspond-
ing option-specific policy.
This non-Markovian property might encourage the hierarchical

and compositional nature of human behavior. It is central to the
original formulation of the options framework (Sutton et al., 1999),
and is also a natural objective for option discovery. In relation to our
protocol, the correct action for diamond (Figure 2B) varies from
time to time in the same block. It makes sense to create different
options to capture this, and relate it to the inferred hidden cause for
why the correct actions change. Indeed, we observed that the non-
Markovian feature in our experiments encouraged participants to
create and transfer options at multiple levels of abstractions.
We tested whether the environment needs to be non-Markovian to

trigger option creation. Specifically, we designed Experiment 3 by
eliminating the non-Markovian property from Experiment 1 and
testing if that affects option learning and transfer (Figure 8A).
Unsurprisingly, we found weaker option transfer effects in Experi-
ment 3; however, participants’ behavior was still not flat (Figure 8,
Supplementary Figure S13). Thus, our results hint at the possibility
that participants create temporal options (MO), even in the absence
of a need for it, echoing past results showing that humans tend to
create structure unnecessarily (Collins, 2017; Collins & Frank,
2013, 2016b; Yu & Cohen, 2009). Furthermore, this may also
show that objectives for option discovery are not limited to solving
non-markovian problems. For example, (Diuk, Schapiro, et al.,
2013) showed that humans could identify bottleneck states from
transition statistics, reflecting graph-theoretic objectives for option
discovery in humans.

The Options Framework and Other Learning Systems
and Models

While our OptionModel uses a simple form of model-free RL (Q-
learning; Sutton & Barto, 2018) to learn option-specific policies, the
options framework is general and not limited to just Q-learning.
Options can be learned or used with model-free methods (Botvinick
et al., 2009) and model-based methods (Botvinick & Weinstein,
2014). It also has strong connections to successor representations
(Momennejad et al., 2017; Stachenfeld et al., 2017), which might
provide objectives for subgoal discovery.
Moreover, in this article, we gave examples of potential interac-

tion of options with the meta-learning system (Figure 7) and
sequence learning (see supplement) in human participants. How
options might interact with other learning systems is an important
question for future research.
Finally, the options framework is not the first attempt to incorpo-

rate hierarchy and compositionality to model complex human
cognition. Within psychology in particular, the concept of “options”
echoes the idea of “chunking” in the cognitive architecture literature
(Anderson et al., 2004; Lehman et al., 1996). Cognitive architecture
models such as ACT-R (Anderson et al., 2004) rely strongly on the
hierarchical representation of behaviors, whereby procedures fre-
quently executed in successions can become “chunks” that can be

selected at a higher level of abstraction. However, we were not able
to find examples of such cognitive models that focused on how
humans might rapidly learn and transfer hierarchical representa-
tions. Furthermore, a distinct aspect of the RL options framework
(compared to cognitive architectures) is its objective of reward
maximization (Botvinick et al., 2009), which is inherited as an
augmentation of traditional flat RL. In that sense, options propose a
computational framework at Marr’s computational level of analysis
(Niv & Langdon, 2016), not only at the “algorithm and representa-
tion” one. In our model, this reward objective also allows us to
naturally include Bayesian inference as a way of optimal option
selection and transfer. However, there have also been initial attempts
to combine ideas from reward maximization of RL with cognitive
architectures (Fu & Anderson, 2006; Nason & Laird, 2005). It
would be especially interesting to consider potential connections
between the options framework and various cognitive architectures,
which were designed to explain a wide range of human cognition
and not limited to structural learning from trial-by-trial interactions
with the environment and reward feedbacks.

Conclusion

In summary, we found compelling evidence of option learning
and transfer in human participants by examining the learning
dynamics of a novel two-stage experimental paradigm. Through
analyzing participants’ behavioral patterns and model simulations,
we demonstrated the flexibility of option transfer and composition at
distinct levels in humans. We proposed a novel computational
framework, unifying temporal and state abstraction in a hierarchical
reinforcement learning framework, to account for human flexible
decision making.

Humans’ ability to flexibly transfer previously learned skills is
crucial for learning and adaptation in complex real world scenarios.
This ability is also one of the fundamental gaps that sets humans apart
from current state-of-the-art AI algorithms. Therefore, our work trying
to probe learning and transfer in humans might also help provide
inspirations for AI algorithms to be more flexible and human-like.

References

Allen, K. R., Smith, K. A. & Tenenbaum, J. B. (2019). The tools challenge:
Rapid trial-and-error learning in physical problem solving. arXiv pre-
print arXiv:1907.09620.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C. & Qin,
Y. (2004). An integrated theory of the mind. Psychological Review,
111(4), 1036. https://doi.org/10.1037/0033-295X.111.4.1036

Andreas, J., Klein, D. & Levine, S. (2017).Modular multitask reinforcement
learning with policy sketches [Conference session]. Proceedings of the
34th international conference on machine learning-volume 70, Sydney,
Australia.

Angela, J. Y. & Cohen, J. D. (2009). Sequential effects: Superstition or
rational behavior? Advances in Neural Information Processing Systems,
21, 1873–1880.

Badre, D. (2008). Cognitive control, hierarchy, and the rostro–caudal
organization of the frontal lobes. Trends in Cognitive Sciences, 12(5),
193–200. https://doi.org/10.1016/j.tics.2008.02.004

Badre, D. & D’esposito, M. (2009). Is the rostro-caudal axis of the frontal
lobe hierarchical? Nature Reviews Neuroscience, 10 (9), 659. https://
doi.org/10.1038/nrn2667

Badre, D. & D’Esposito, M. (2007). Functional magnetic resonance imaging
evidence for a hierarchical organization of the prefrontal cortex. Journal of

664 XIA AND COLLINS

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/rev0000295.supp
https://doi.org/10.1037/rev0000295.supp
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1038/nrn2667
https://doi.org/10.1038/nrn2667
https://doi.org/10.1038/nrn2667


Cognitive Neuroscience, 19(12), 2082–2099. https://doi.org/10.1162/jocn
.2007.19.12.2082

Badre, D. & Frank, M. J. (2011). Mechanisms of hierarchical reinforcement
learning in cortico–striatal circuits 2: Evidence from fMRI. Cerebral
Cortex, 22(3), 527–536. https://doi.org/10.1093/cercor/bhr117

Balleine, B. W., Dezfouli, A., Ito, M. & Doya, K. (2015). Hierarchical
control of goal-directed action in the cortical–basal ganglia network.
Current Opinion in Behavioral Sciences, 5, 1–7. https://doi.org/10
.1016/j.cobeha.2015.06.001

Biederman, I. (1987). Recognition-by-components: A theory of human
image understanding. Psychological Review, 94 (2), 115. https://
doi.org/10.1037/0033-295X.94.2.115

Bill, J., Pailian, H., Gershman, S. J. & Drugowitsch, J. (2019). Hierarchical
structure is employed by humans during visual motion perception. Pro-
ceedings of the National Academy of Sciences, 117(39), 24581–24589.
https://doi.org/10.1073/pnas.2008961117

Botvinick, M. M. (2007). Multilevel structure in behaviour and in the brain:
A model of fuster’s hierarchy. Philosophical Transactions of the Royal
Society B: Biological Sciences, 362(1485), 1615–1626. https://doi.org/10
.1098/rstb.2007.2056

Botvinick, M. M. (2012). Hierarchical reinforcement learning and decision
making. Current Opinion in Neurobiology, 22 (6), 956–962. https://
doi.org/10.1016/j.conb.2012.05.008

Botvinick, M. M., Niv, Y. & Barto, A. C. (2009). Hierarchically organized
behavior and its neural foundations: A reinforcement learning perspective.
Cognition, 113 (3), 262–280. https://doi.org/10.1016/j.cognition.2008
.08.011

Botvinick, M. M. & Plaut, D. C. (2004). Doing without schema hierarchies:
A recurrent connectionist approach to normal and impaired routine
sequential action. Psychological Review, 111(2), 395. https://doi.org/10
.1037/0033-295X.111.2.395

Botvinick, M. M. & Weinstein, A. (2014). Model-based hierarchical rein-
forcement learning and human action control. Philosophical Transactions
of the Royal Society B, 369(1655), Article 20130480. https://doi.org/10
.1098/rstb.2013.0480

Clegg, B. A., DiGirolamo, G. J. & Keele, S. W. (1998). Sequence learning.
Trends in Cognitive Sciences, 2(8), 275–281. https://doi.org/10.1016/
S1364-6613(98)01202-9

Collins, A. G. (2017). The cost of structure learning. Journal of Cognitive
Neuroscience, 29(10), 1646–1655. https://doi.org/10.1162/jocn_a_01128

Collins, A. G. (2018). Learning structures through reinforcement. In Goal-
directed decision making (pp. 105–123). Elsevier. https://doi.org/10
.1016/B978-0-12-812098-9.00005-X

Collins, A. G. (2019). Reinforcement learning: Bringing together computa-
tion and cognition. Current Opinion in Behavioral Sciences, 29, 63–68.
https://doi.org/10.1016/j.cobeha.2019.04.011

Collins, A. G., Cavanagh, J. F. & Frank, M. J. (2014). Human eeg uncovers
latent generalizable rule structure during learning. Journal of Neurosci-
ence, 34(13), 4677–4685. https://doi.org/10.1523/JNEUROSCI.3900-
13.2014

Collins, A. G. & Frank, M. J. (2012). Howmuch of reinforcement learning is
working memory, not reinforcement learning? a behavioral, computa-
tional, and neurogenetic analysis. European Journal of Neuroscience,
35(7), 1024–1035. https://doi.org/10.1111/j.1460-9568.2011.07980.x

Collins, A. G. & Frank, M. J. (2013). Cognitive control over learning:
Creating, clustering, and generalizing task-set structure. Psychological
Review, 120(1), 190. https://doi.org/10.1037/a0030852

Collins, A. G. & Frank, M. J. (2016a). Neural signature of hierarchically
structured expectations predicts clustering and transfer of rule sets in
reinforcement learning.Cognition, 152, 160–169. https://doi.org/10.1016/
j.cognition.2016.04.002

Collins, A. G. & Frank, M. J. (2016b). Motor demands constrain cognitive
rule structures. PLoS computational biology, 12(3), Article e1004785.
https://doi.org/10.1371/journal.pcbi.1004785

Dezfouli, A. & Balleine, B. W. (2012). Habits, action sequences and
reinforcement learning. European Journal of Neuroscience, 35 (7),
1036–1051. https://doi.org/10.1111/j.1460-9568.2012.08050.x

Dezfouli, A. & Balleine, B. W. (2013). Actions, action sequences and habits:
Evidence that goal-directed and habitual action control are hierarchically
organized.PLoSComputational Biology, 9 (12), Article e1003364. https://
doi.org/10.1371/journal.pcbi.1003364

Diuk, C., Schapiro, A. C., Cordova, N., Ribas-Fernandes, J. J., Niv, Y. &
Botvinick, M. M. (2013). Divide and conquer: Hierarchical reinforcement
learning and task decomposition in humans. InComputational and robotic
models of the hierarchical organization of behavior (pp. 271–291).
Springer. https://doi.org/10.1007/978-3-642-39875-9_12

Diuk, C., Tsai, K.,Wallis, J., Botvinick, M. M. & Niv, Y. (2013). Hierarchi-
cal learning induces two simultaneous, but separable, prediction errors in
human basal ganglia. Journal of Neuroscience, 33(13), 5797–5805.
https://doi.org/10.1523/JNEUROSCI.5445-12.2013

Eckstein, M. K. & Collins, A. G. E. (2019). Computational evidence for
hierarchically structured reinforcement learning in humans. Proceedings
of the National Academy of Sciences, 117(47), 29381–29389. https://
doi.org/10.1073/pnas.1912330117

Farashahi, S., Rowe, K., Aslami, Z., Lee, D. & Soltani, A. (2017). Feature-
based learning improves adaptability without compromising precision.
Nature Communications, 8(1), 1768. https://doi.org/10.1038/s41467-017-
01874-w

Fox, R., Krishnan, S., Stoica, I. & Goldberg, K. (2017).Multi-level discovery
of deep options. arXiv preprint arXiv:1703.08294.

Frank, M. J., & Badre, D. (2011). Mechanisms of hierarchical reinforcement
learning in corticostriatal circuits 1: Computational analysis. Cerebral
Cortex, 22(3), 509–526. https://doi.org/10.1093/cercor/bhr114

Franklin, N. T. & Frank, M. J. (2018). Compositional clustering in task
structure learning. PLoS Computational Biology, 14(4), Article e1006116.
https://doi.org/10.1371/journal.pcbi.1006116

Fu, W.-T. & Anderson, J. R. (2006). From recurrent choice to skill learning:
A reinforcement-learning model. Journal of Experimental Psychology:
General, 135(2), 184. https://doi.org/10.1037/0096-3445.135.2.184

Gläscher, J., Daw, N., Dayan, P. & O’Doherty, J. P. (2010). States versus
rewards: Dissociable neural prediction error signals underlying model-
based and model-free reinforcement learning. Neuron, 66(4), 585–595.
https://doi.org/10.1016/j.neuron.2010.04.016

Harlow, H. F. (1949). The formation of learning sets. Psychological review,
56(1), 51. https://doi.org/10.1037/h0062474

Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by
anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122–128.
https://doi.org/10.1016/j.tics.2011.12.008

Jayaraman, D., Ebert, F., Efros, A. A. & Levine, S. (2018). Time-agnostic
prediction: Predicting predictable video frames. arXiv preprint
arXiv:1808.07784.

Jiang,Y., Gu, S.,Murphy,K.&Finn, C. (2019). Language as an abstraction for
hierarchical deep reinforcement learning. arXiv preprint arXiv:1906.07343.

Koechlin, E. & Jubault, T. (2006). Broca’s area and the hierarchical
organization of human behavior. Neuron, 50(6), 963–974. https://
doi.org/10.1016/j.neuron.2006.05.017

Koechlin, E., Ody, C. & Kouneiher, F. (2003). The architecture of cognitive
control in the human prefrontal cortex. Science, 302(5648), 1181–1185.
https://doi.org/10.1126/science.1088545

Konidaris, G. &Barto, A. G. (2007).Building portable options: Skill transfer
in reinforcement learning [Conference session]. Proceedings of the 20th
international joint conference on artificial intelligence, Hyderabad, India.

Krigolson, O. & Holroyd, C. (2006). Evidence for hierarchical error proces-
sing in the human brain. Neuroscience, 137(1), 13–17. https://doi.org/10
.1016/j.neuroscience.2005.10.064

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. (2015). Human-level
concept learning through probabilistic program induction. Science, 350
(6266), 1332–1338. https://doi.org/10.1126/science.aab3050

HUMAN OPTION LEARNING, TRANSFER, AND COMPOSITION 665

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1093/cercor/bhr117
https://doi.org/10.1093/cercor/bhr117
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1016/j.cobeha.2015.06.001
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1073/pnas.2008961117
https://doi.org/10.1073/pnas.2008961117
https://doi.org/10.1073/pnas.2008961117
https://doi.org/10.1098/rstb.2007.2056
https://doi.org/10.1098/rstb.2007.2056
https://doi.org/10.1098/rstb.2007.2056
https://doi.org/10.1098/rstb.2007.2056
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.conb.2012.05.008
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1037/0033-295X.111.2.395
https://doi.org/10.1037/0033-295X.111.2.395
https://doi.org/10.1037/0033-295X.111.2.395
https://doi.org/10.1037/0033-295X.111.2.395
https://doi.org/10.1037/0033-295X.111.2.395
https://doi.org/10.1098/rstb.2013.0480
https://doi.org/10.1098/rstb.2013.0480
https://doi.org/10.1098/rstb.2013.0480
https://doi.org/10.1098/rstb.2013.0480
https://doi.org/10.1016/S1364-6613(98)01202-9
https://doi.org/10.1016/S1364-6613(98)01202-9
https://doi.org/10.1016/S1364-6613(98)01202-9
https://doi.org/10.1162/jocn_a_01128
https://doi.org/10.1162/jocn_a_01128
https://doi.org/10.1016/B978-0-12-812098-9.00005-X
https://doi.org/10.1016/B978-0-12-812098-9.00005-X
https://doi.org/10.1016/B978-0-12-812098-9.00005-X
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1016/j.cobeha.2019.04.011
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1371/journal.pcbi.1004785
https://doi.org/10.1371/journal.pcbi.1004785
https://doi.org/10.1371/journal.pcbi.1004785
https://doi.org/10.1371/journal.pcbi.1004785
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1111/j.1460-9568.2012.08050.x
https://doi.org/10.1371/journal.pcbi.1003364
https://doi.org/10.1371/journal.pcbi.1003364
https://doi.org/10.1371/journal.pcbi.1003364
https://doi.org/10.1371/journal.pcbi.1003364
https://doi.org/10.1371/journal.pcbi.1003364
https://doi.org/10.1007/978-3-642-39875-9_12
https://doi.org/10.1007/978-3-642-39875-9_12
https://doi.org/10.1523/JNEUROSCI.5445-12.2013
https://doi.org/10.1523/JNEUROSCI.5445-12.2013
https://doi.org/10.1523/JNEUROSCI.5445-12.2013
https://doi.org/10.1523/JNEUROSCI.5445-12.2013
https://doi.org/10.1073/pnas.1912330117
https://doi.org/10.1073/pnas.1912330117
https://doi.org/10.1073/pnas.1912330117
https://doi.org/10.1073/pnas.1912330117
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1093/cercor/bhr114
https://doi.org/10.1093/cercor/bhr114
https://doi.org/10.1371/journal.pcbi.1006116
https://doi.org/10.1371/journal.pcbi.1006116
https://doi.org/10.1371/journal.pcbi.1006116
https://doi.org/10.1371/journal.pcbi.1006116
https://doi.org/10.1037/0096-3445.135.2.184
https://doi.org/10.1037/0096-3445.135.2.184
https://doi.org/10.1037/0096-3445.135.2.184
https://doi.org/10.1037/0096-3445.135.2.184
https://doi.org/10.1037/0096-3445.135.2.184
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1037/h0062474
https://doi.org/10.1037/h0062474
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1016/j.neuron.2006.05.017
https://doi.org/10.1126/science.1088545
https://doi.org/10.1126/science.1088545
https://doi.org/10.1126/science.1088545
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1016/j.neuroscience.2005.10.064
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050


Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. (2017).
Building machines that learn and think like people. Behavioral and Brain
Sciences, 40, Article e253. https://doi.org/10.1017/S0140525X16001837

Lee, T. S. & Mumford, D. (2003). Hierarchical bayesian inference in the
visual cortex. Journal of the Optical Society of America A, 20(7), 1434–
1448. https://doi.org/10.1364/JOSAA.20.001434

Lehman, J. F., Laird, J. E., Rosenbloom, P. (1996). A gentle introduction to
soar, an architecture for human cognition. Invitation to Cognitive Science,
4, 212–249.

Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. (2017).
Dynamic interaction between reinforcement learning and attention in
multidimensional environments. Neuron, 93 (2), 451–463. https://
doi.org/10.1016/j.neuron.2016.12.040

Machado, M. C., Bellemare, M. G., & Bowling, M. (2017). A laplacian
framework for option discovery in reinforcement learning. In Proceedings
of the 34th international conference on machine learning-volume 70
(pp. 2295–2304). JMLR. org.

Machado, M. C. Rosenbaum, C., Guo, X., Liu, M., Tesauro, G. & Campbell,
M. (2017). Eigenoption discovery through the deep successor represen-
tation. arXiv preprint arXiv:1710.11089.

McGovern, A. & Barto, A. G. (2001). Automatic discovery of subgoals
in reinforcement learning using diverse density [Conference session].
Proceedings of the Eighteenth International Conference on Machine
Learning (ICML ’01). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Menache, I., Mannor, S. & Shimkin, N. (2002). Q-cut—dynamic discovery
of sub-goals in reinforcement learning. In European conference on
machine learning (pp. 295–306). Springer.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., : : : Ostrovski, G. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529. https://doi.org/10
.1038/nature14236

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M.M., Daw, N. D.
& Gershman, S. J. (2017). The successor representation in human
reinforcement learning. Nature Human Behaviour, 1(9), 680. https://
doi.org/10.1038/s41562-017-0180-8

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–
140. https://doi.org/10.1016/S1364-6613(03)00028-7

Moran, R., Keramati, M., Dayan, P. & Dolan, R. J. (2019). Retrospective
model-based inference guides model-free credit assignment. Nature Com-
munications, 10(1), 750.

Nair, S. & Finn, C. (2019). Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation. arXiv preprint
arXiv:1909.05829.

Nason, S. & Laird, J. E. (2005). Soar-rl: Integrating reinforcement learning
with soar. Cognitive Systems Research, 6(1), 51–59. https://doi.org/10
.1016/j.cogsys.2004.09.006

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathemati-
cal Psychology, 53 (3), 139–154. https://doi.org/10.1016/j.jmp.2008
.12.005

Niv, Y. & Langdon, A. (2016). Reinforcement learning with marr. Current
Opinion in Behavioral Sciences, 11, 67–73. https://doi.org/10.1016/j.cobe
ha.2016.04.005

Paolacci, G., Chandler, J. & Ipeirotis, P. G. (2010). Running experiments on
amazon mechanical turk. Judgment and Decision making, 5(5), 411–419.

Peng, X. B., Chang, M., Zhang, G., Abbeel, P. & Levine, S. (2019). Mcp:
Learning composable hierarchical control with multiplicative composi-
tional policies. arXiv preprint arXiv:1905.09808.

Pitman, J. (2006).Combinatorial stochastic processes: Ecole d’et_e de prob-
abilit_es de saint-our xxxii-2002. Springer.

Ribas-Fernandes, J. J., Shahnazian, D., Holroyd, C. B. & Botvinick, M. M.
(2019). Subgoal-and goal-related reward prediction errors in medial
prefrontal cortex. Journal of cognitive neuroscience, 31(1), 8–23.
https://doi.org/10.1162/jocn_a_01341

Ribas-Fernandes, J. J., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G.,
Niv, Y. & Botvinick, M. M. (2011). A neural signature of hierarchical
reinforcement learning. Neuron, 71(2), 370–379. https://doi.org/10.1016/j
.neuron.2011.05.042

Sarafyazd, M. & Jazayeri, M. (2019). Hierarchical reasoning by neural
circuits in the frontal cortex. Science, 364(6441), Article eaav8911. https://
doi.org/10.1126/science.aav8911

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. &
Botvinick, M. M. (2013). Neural representations of events arise from
temporal community structure. Nature Neuroscience, 16(4), 486. https://
doi.org/10.1038/nn.3331

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
: : :Graepel, T. (2018). A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science, 362(6419), 1140–
1144. https://doi.org/10.1126/science.aar6404

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty to identify useful
temporal abstractions in reinforcement learning. In Proceedings of the
twenty-first international conference on machine learning (p. 95). ACM.
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