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Abstract Reinforcement Learning (RL) models have revolutionized the cognitive and brain 
sciences, promising to explain behavior from simple conditioning to complex problem solving, 
to shed light on developmental and individual differences, and to anchor cognitive processes in 
specific brain mechanisms. However, the RL literature increasingly reveals contradictory results, 
which might cast doubt on these claims. We hypothesized that many contradictions arise from two 
commonly-held assumptions about computational model parameters that are actually often invalid: 
That parameters generalize between contexts (e.g. tasks, models) and that they capture interpre-
table (i.e. unique, distinctive) neurocognitive processes. To test this, we asked 291 participants aged 
8–30 years to complete three learning tasks in one experimental session, and fitted RL models to 
each. We found that some parameters (exploration / decision noise) showed significant general-
ization: they followed similar developmental trajectories, and were reciprocally predictive between 
tasks. Still, generalization was significantly below the methodological ceiling. Furthermore, other 
parameters (learning rates, forgetting) did not show evidence of generalization, and sometimes even 
opposite developmental trajectories. Interpretability was low for all parameters. We conclude that 
the systematic study of context factors (e.g. reward stochasticity; task volatility) will be necessary to 
enhance the generalizability and interpretability of computational cognitive models.

Editor's evaluation
This study adopts a within-participant approach to address two important questions in the field 
of human reinforcement learning: to what extent do estimated computational model parameters 
generalize across different tasks and can their meaning be interpreted in the same way in different 
task contexts? The authors find that inferred parameters show moderate to little generalizability 
across tasks, and that their interpretation strongly depends on task context.

Introduction
In recent decades, cognitive neuroscience has made breakthroughs in computational modeling, 
demonstrating that reinforcement learning (RL) models can explain foundational aspects of human 
thought and behavior. RL models can explain not only simple cognitive processes such as stimulus-
outcome and stimulus-response learning (Schultz et  al., 1997; O’Doherty et  al., 2004; Gläscher 
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et  al., 2009), but also highly complex processes, including goal-directed, temporally extended 
behavior (Ribas-Fernandes et al., 2011; Daw et al., 2011), meta-learning (Wang et al., 2018), and 
abstract problem solving requiring hierarchical thinking (Eckstein and Collins, 2020; Botvinick, 2012; 
Collins and Koechlin, 2012; Werchan et al., 2016). Underlining their centrality in the study of human 
cognition, RL models have been applied across the lifespan (van den Bos et al., 2018; Bolenz et al., 
2017; Nussenbaum and Hartley, 2019), and in both healthy participants and those experiencing 
psychiatric illness (Huys et  al., 2016; Adams et  al., 2016; Hauser et  al., 2019; Ahn and Buse-
meyer, 2016; Deserno et al., 2013). RL models are of particular interest because they also promise 
a close link to brain function: A specialized network of brain regions, including the basal ganglia 
and prefrontal cortex, implement computations that mirror specific components of RL algorithms, 
including action values and reward prediction errors (Frank and Claus, 2006; Niv, 2009; Lee et al., 
2012; O’Doherty et al., 2015; Glimcher, 2011; Garrison et al., 2013; Dayan and Niv, 2008). In 
sum, RL, explaining behavior ranging from simple conditioning to complex problem solving, appro-
priate for diverse human (and nonhuman) populations, based on a compelling theoretical foundation 
(Sutton and Barto, 2017), and with strong ties to brain function, has seen a surge in published studies 
since its introduction (Palminteri et al., 2017), and emerged as a powerful and potentially unifying 
modeling framework for cognitive and neural processing.

Computational modeling enables researchers to condense rich behavioral datasets into simple, 
falsifiable models (e.g. RL) and fitted model parameters (e.g. learning rate, decision temperature) 
(van den Bos et al., 2018; Palminteri et al., 2017; Daw, 2011; Wilson and Collins, 2019; Guest and 
Martin, 2021; Blohm et al., 2020). These models and parameters are often interpreted as a reflection 
of (or ‘window into’) cognitive and/or neural processes, with the ability to dissect these processes 
into specific, unique components, and to measure participants’ inherent characteristics along these 
components. For example, RL models have been praised for their ability to separate the decision 
making process into value updating and choice selection stages, allowing for the separate investi-
gation of each dimension. Hereby, RL models infer person-specific parameters for each dimension 
(e.g. learning rate and decision noise), seemingly providing a direct measure of individuals’ inherent 
characteristics. Crucially, many current research practices are firmly based on these (often implicit) 
assumptions, which give rise to the expectation that parameters have a task- and model-independent 
interpretation and will seamlessly generalize between studies. However, there is growing—though 
indirect—evidence that these assumptions might not (or not always) be valid. The following section 
lays out existing evidence in favor and in opposition of model generalizability and interpretability. 
Building on our previous opinion piece, which—based on a review of published studies—argued that 
there is less evidence for model generalizability and interpretability than expected based on current 
research practices (Eckstein et al., 2021), this study seeks to directly address the matter empirically.

Many current research practices are implicitly based on the interpretability and generalizability of 
computational model parameters (despite the fact that many researchers explicitly distance them-
selves from them). For our purposes, we define a model variable (e.g. fitted parameter) as general-
izable if it is consistent across uses, such that a person would be characterized with the same values 
independent of the specific model or task used to estimate the variable. Generalizability is a conse-
quence of the assumption that parameters are intrinsic to participants rather than task dependent 
(e.g. a high learning rate is a personal characteristic that might reflect an individual’s unique brain 
structure). One example of our implicit assumptions about generalizability is the fact that we often 
directly compare model parameters between studies—for example, comparing our findings related to 
learning rate parameters to a previous study’s findings related to learning rate parameters. Note that 
such a comparison is only valid if parameters capture the same underlying constructs across studies, 
tasks, and model variations, that is, if parameters generalize. The literature has implicitly equated 
parameters in this way in review articles (Huys et al., 2016; Adams et al., 2016; Hauser et al., 2019; 
Frank and Claus, 2006; Niv, 2009; Lee et al., 2012; O’Doherty et al., 2015; Glimcher, 2011; Dayan 
and Niv, 2008), meta-analyses (Garrison et al., 2013; Yaple and Yu, 2019; Liu et al., 2016), and also 
most empirical papers, by relating parameter-specific findings across studies. We also implicitly evoke 
parameter generalizability when we study task-independent empirical parameter priors (Gershman, 
2016), or task-independent parameter relationships (e.g. interplay between different kinds of learning 
rates [Harada, 2020]), because we presuppose that parameter settings are inherent to participants, 
rather than task specific.

https://doi.org/10.7554/eLife.75474
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We define a model variable as interpretable if it isolates specific and unique cognitive elements, 
and/or is implemented in separable and unique neural substrates. Interpretability follows from the 
assumption that the decomposition of behavior into model parameters ‘carves cognition at its joints’, 
and provides fundamental, meaningful, and factual components (e.g. separating value updating from 
decision making). We implicitly invoke interpretability when we tie model variables to neural substrates 
in a task-general way (e.g. reward prediction errors to dopamine function [Schultz and Dickinson, 
2000]), or when we use parameters as markers of psychiatric conditions in a model-independent way 
(e.g. working-memory deficits in schizophrenia [Collins et al., 2014]). Interpretability is also required 
when we relate abstract parameters to aspects of real-world decision making (Heinz et al., 2017), 
and generally, when we assume that model variables are particularly ‘theoretically meaningful’ (Huys 
et al., 2016).

However, in the midst of the growing application of computational modeling of behavior, the focus 
has also shifted toward inconsistencies and apparent contradictions in the emerging literature, which 
are becoming apparent in cognitive (Nassar and Frank, 2016), developmental (Nussenbaum and 
Hartley, 2019; Javadi et al., 2014; Blakemore and Robbins, 2012; DePasque and Galván, 2017), 
clinical (Adams et al., 2016; Hauser et al., 2019; Ahn and Busemeyer, 2016; Deserno et al., 2013), 
and neuroscience studies (Garrison et al., 2013; Yaple and Yu, 2019; Liu et al., 2016; Mohebi et al., 
2019), and have recently become the focus of targeted investigations (Robinson and Chase, 2017; 
Weidinger et al., 2019; Brown et al., 2020; Pratt et al., 2021). For example, some developmental 
studies have shown that learning rates increased with age (Master et  al., 2020; Davidow et  al., 
2016), whereas others have shown that they decrease (Decker et al., 2015). Yet others have reported 
U-shaped trajectories with either peaks (Rosenbaum et al., 2020) or troughs (Eckstein et al., 2022) 
during adolescence, or stability within this age range (Palminteri et al., 2016) (for a comprehensive 
review, see Nussenbaum and Hartley, 2019; for specific examples, see Nassar and Frank, 2016). 
This is just one striking example of inconsistencies in the cognitive modeling literature, and many 
more exist (Eckstein et al., 2022). These inconsistencies could signify that computational modeling is 
fundamentally flawed or inappropriate to answer our research questions. Alternatively, inconsistencies 
could signify that the method is valid, but our current implementations are inappropriate (Palminteri 
et al., 2017; Uttal, 1990; Webb, 2001; Navarro, 2019; Yarkoni, 2020; Wilson and Collins, 2019). 
However, we hypothesize that inconsistencies can also arise for a third reason: Even if both method 
and implementation are appropriate, inconsistencies like the ones above are expected—and not a 
sign of failure—if implicit assumptions of generalizability and interpretability are not always valid. 
For example, model parameters might be more context-dependent and less person-specific than we 
often appreciate (Nussenbaum and Hartley, 2019; Nassar and Frank, 2016; Yaple and Yu, 2019; 
Behrens et al., 2007; McGuire et al., 2014).

To illustrate this point, the current project began as an investigation into the development of 
learning in adolescence, with the aim of combining the insights of three different learning tasks to 
gain a more complete understanding of the underlying mechanisms. However, even though each task 
individually showed strong and interesting developmental patterns in terms of model parameters 
(Master et al., 2020; Eckstein et al., 2022; Xia et al., 2021), these patterns were very different—and 
even contradictory—across tasks. This implied that specific model parameters (e.g. learning rate) did 
not necessarily isolate specific cognitive processes (e.g. value updating) and consistently measure 
individuals on these processes, but that they captured different processes depending on the learning 
context of the task (lack of generalizability). In addition, the processes identified by one parameter 
were not necessarily distinct from the cognitive processes (e.g. decision making) identified by other 
parameters (e.g. decision temperature), but could overlap between parameters (lack of interpret-
ability). In a nutshell, the ‘same’ parameters seemed to measure something different in each task.

The goal of the current project was to assess these patterns formally: We determined the degree 
to which parameters generalized between three different RL tasks, investigated whether parameters 
were interpretable as unique and specific processes, and provide initial evidence for context factors 
that potentially modulate generalizability and interpretability of model parameters, including feed-
back stochasticity, task volatility, and memory demands. To this aim, we compared the same individ-
uals’ RL parameters, fit to different learning tasks in a single study, in a developmental dataset (291 
participants, ages 8–30 years). Using a developmental dataset had several advantages: It provided 
large between-participant variance and hence better coverage of the parameter space, and allowed us 

https://doi.org/10.7554/eLife.75474
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to specifically target outstanding discrepancies in the developmental psychology literature (Nussen-
baum and Hartley, 2019). The three learning tasks we used varied on several common dimensions, 
including feedback stochasticity, task volatility, and memory demands (Figure 1E), and have been 
used previously to study RL processes (Davidow et al., 2016; Collins and Frank, 2012; Javadi et al., 
2014; Master et  al., 2020; Eckstein et  al., 2022; Xia et  al., 2021). However, like many tasks in 
the literature, the tasks likely also engaged other cognitive processes besides RL, such as working 
memory and reasoning. The within-participant design of our study allowed us to test directly whether 
the same participants showed the same parameters across tasks (generalizability), and the combina-
tion of multiple tasks shed light on which cognitive processes the same parameters captured in each 
task (interpretability). We extensively compared and validated all RL models (Palminteri et al., 2017; 
Wilson and Collins, 2019; Lee, 2011) and have reported each task’s unique developmental results 
separately (Master et al., 2020; Eckstein et al., 2022; Xia et al., 2021).

Our results show a striking lack of generalizability and interpretability for some tasks and param-
eters, but convincing generalizability for others. This reveals an urgent need for future research to 
address the role of context factors in computational modeling, and reveals the necessity of taking 
context factors into account when interpreting and generalizing results. It also suggests that some 
prior discrepancies are likely explained by differences in context.

Results
This section gives a brief overview of the experimental tasks (Figure 1B–D) and computational models 
(Figure 1F; also see sections 'Task Design', 'Computational Models', and 'Appendix 2'; for details, 
refer to original publications [Master et al., 2020; Eckstein et al., 2022; Xia et al., 2021]). We then 
show our main findings on parameter generalizability (section 'Part I: parameter generalizability') and 
interpretability (section 'Part II: parameter interpretability'). All three tasks are learning tasks and have 
been previously well-captured by RL models, yet with differences in parameterization (Javadi et al., 
2014; Davidow et al., 2016; Collins and Frank, 2012). In our study as well, the best-fitting RL models 
differed between tasks, containing some parameters that were the same across tasks, and some that 
were task-specific (Figure 1F). Thus, our setup provides a realistic reflection of the diversity of compu-
tational models in the literature.

Task A required participants to learn the correct associations between each of four stimuli (butter-
flies) and two responses (flowers) based on probabilistic feedback (Figure 1B). The best-fitting model 
contained three free parameters: learning rate from positive outcomes ‍α+‍, inverse decision tempera-
ture ‍β‍, and forgetting ‍F‍. It also contained one fixed parameter: learning rate from negative outcomes 

‍α− = 0‍ (Xia et al., 2021). Task B required participants to adapt to unexpected switches in the action-
outcome contingencies of a simple bandit task (only one of two boxes contained a gold coin at any 
time) based on semi-probabilistic feedback (Figure 1C). The best-fitting RL model contained four free 
parameters: ‍α+‍, ‍α−‍, ‍β‍, and choice persistence ‍p‍ (Eckstein et al., 2022). Task C required learning of 
stimulus-response associations like task A, but over several task blocks with varying numbers of stimuli, 
and using deterministic feedback (Figure 1D). The best model for this task combined RL and working 
memory mechanisms, containing RL parameters ‍α+‍ and ‍α−‍; working memory parameters capacity ‍K ‍, 
forgetting ‍F‍, and noise ‍ϵ‍; and mixture parameter ‍ρ‍, which determined the relative weights of RL and 
working memory (Master et al., 2020; Collins and Frank, 2012). The Markov decision process (MDP) 
framework provides a common language to describe learning tasks like ours, by breaking them down 
into states, actions, and reward functions. Appendix 2 summarizes the tasks in this way and highlights 
major differences.

We employed rigorous model fitting, comparison, and validation to obtain the best-fitting models 
presented here (see Appendix 4 and Palminteri et al., 2017; Daw, 2011; Wilson and Collins, 2019; 
Lee, 2011): For each task, we compared a large number of competing models, based on different 
parameterizations and cognitive mechanisms, and selected the best one based on quantitative model 
comparison scores as well as the models’ abilities to reproduce participants’ behavior in simulation 
(Appendix 4—figure 1). We also used hierarchical Bayesian methods for model fitting and compar-
ison where possible, to obtain the most accurate parameter estimates (Lee, 2011; Brown et  al., 
2020). Individual publications provide further details on the set of models compared and validate 
the claim that the models presented here are the best-fitting ones for each task (Master et al., 2020; 
Eckstein et al., 2022; Xia et al., 2021), an important premise for the claim that individual parameters 

https://doi.org/10.7554/eLife.75474
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are well estimated. This qualitative validation step for each dataset ensures that potential parameter 
discrepancies between tasks are not due to a lack of modeling quality, and can indeed provide accu-
rate information about parameter generalizability and interpretability. (Though we acknowledge that 
no model is ever right.)
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(B) Task A procedure of (‘Butterfly task’). Participants saw one of four butterflies on each trial and selected one of two flowers in response, via button 
press on a game controller. Each butterfly had a stable preference for one flower throughout the task, but rewards were delivered stochastically (70% 
for correct responses, 30% for incorrect). For details, see section 'Task design' and the original publication (Xia et al., 2021). (C) Task B Procedure 
(‘Stochastic Reversal’). Participants saw two boxes on each trial and selected one with the goal of finding gold coins. At each point in time, one box was 
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'Computational models' and original publications). Each row shows one model, columns show model parameters. ‘Y’ (yes) indicates that a parameter is 
present in a given model, ‘—’ indicates that a parameter is not present. ‘‍

1
β ‍ and ‍ϵ‍’ refer to exploration / noise parameters; ‍α+‍ (‍α−‍) to learning rate for 
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Part I: parameter generalizability
Crucially, the parameter inconsistencies observed in previous literature could be caused by non-specific 
differences between studies (e.g. participant samples, testing procedures, modeling approaches, 
research labs). Our within-participant design allows us to rule these out by testing whether the same 
participants show different parameter values when assessed using different tasks; this finding would 
be strong evidence for the hypothesized lack of parameter generalizability. To assess this, we first 
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C: blue). Parameter values differed significantly between tasks; significance stars show the p-values of the main 
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determined whether participants showed similar parameter values across tasks, and then whether 
tasks showed similar parameter age trajectories.

Differences in absolute parameter values
We first used repeated-measures analyses of variance (ANOVAs) to test for task effects on absolute 
parameter values (Figure 2A). When ANOVAs showed significant task effects, we followed up with 
repeated-measures t-tests to compare each pair of tasks, using the Bonferroni correction.

Learning rates ‍α+‍ and ‍α−‍ were so dissimilar across tasks that they occupied largely separate 
ranges: They were very low in task C (‍α+‍ mean: 0.07, sd: 0.18; ‍α−‍ mean: 0.03, sd: 0.13), intermediate 
in task A (‍α+‍ mean: 0.22, sd: 0.09; ‍α−‍ was fixed at 0), but fairly high in task B (‍α+‍ mean: 0.77, sd: 0.11; 

‍α−‍ mean: 0.62, sd: 0.14; for statistical comparison, see Table 1). Decision noise was high in task B (‍
1
β ‍ 

mean: 0.33, sd: 0.15), but low in tasks A (‍
1
β ‍ mean: 0.095, sd: 0.0087) and C (‍ϵ‍ mean: 0.025, sd: 0.032; 

statistics in Table 1 ignore ‍ϵ‍ because its absolute values were not comparable to ‍
1
β ‍ due to the different 

parameterization; see section 'Computational models'). Forgetting was significantly higher in task C 
(mean: 0.19, sd: 0.17) than A (mean: 0.056, sd: 0.028). Task B was best fit without forgetting.

For all parameters, absolute parameter values hence differed substantially between tasks. This 
shows that the three tasks produced significantly different estimates of learning rates, decision noise/
exploration, and forgetting for the same participants (Figure  2B). Interestingly, these parameter 
differences echoed specific task demands: Learning rates and noise/exploration were highest in task 
B, where frequent switches required quick updating and high levels of exploration. Similarly, forget-
ting was highest in task C, which posed the largest memory demands. Using regression models that 
controlled for age (instead of ANOVA) led to similar results (Table Appendix 8—table 2).

Relative parameter differences
However, comparing parameters in terms of their absolute values has shortcomings because it mini-
mizes the role of relative variance between participants, which reflects participants’ mutual relation-
ships to each other, and might be an important component of parameters. To test whether parameters 
generalized in relative, rather than absolute terms, we first correlated corresponding parameters 
between each pair of tasks, using Spearman correlation (Appendix 8—figure 1). Indeed, both ‍α+‍ 
(Appendix 8—figure 1A) and noise/exploration parameters (Appendix 8—figure 1B) were signifi-
cantly positively correlated between tasks A and B as well as between tasks A and C. Significant 
correlations were lacking between tasks B and C. This suggests that both ‍α+‍ and noise/explora-
tion generalized in terms of the relationships they captured between participants; however, this 

Table 1. Statistics of ANOVAs predicting raw parameter values from task (A, B, C).
When an ANOVA showed a significant task effect, we followed up with post-hoc, Bonferroni-
corrected t-tests. * ‍p < .05‍; ** ‍p < .01‍; *** ‍p < .001‍.

Parameter Model Tasks F / t df ‍p‍ sig.

‍
1
β ‍ ANOVA A, B 830 1 ‍p < 0.001‍ ***

t-test A vs B 25 246 ‍p < 0.001‍ ***

‍α+‍ ANOVA A, B, C 2,018 2 ‍p < 0.001‍ ***

t-test A vs B 66 246 ‍p < 0.001‍ ***

t-test A vs C 12 246 ‍p < 0.001‍ ***

t-test B vs C 51 246 ‍p < 0.001‍ ***

‍α−‍ ANOVA B, C 2,357 1 ‍p < 0.001‍ ***

t-test B vs C 49 246 ‍p < 0.001‍ ***

Forgetting ANOVA A, C 161 1 ‍p < 0.001‍ ***

t-test A vs C 49 246 ‍p < 0.001‍ ***

https://doi.org/10.7554/eLife.75474
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generalization was only evident between tasks A and B or A and C, potentially due to the fact that task 
A was more similar to tasks B and C than these were to each other (Figure 1E; also see section 'Main 
axes of variation'). Fig. Appendix 8—figure 3 shows the correlations between all pairs of features in 
the dataset (model parameters and behavioral measures). Note that noise parameters generalized 
between tasks A and C despite differences in parameterization (‍ϵ‍ vs. ‍1/β‍), showing robustness in the 
characterization of choice stochasticity (Appendix 8—figure 1B).

Parameter age trajectories
This correlation analysis, however, is limited in its failure to account for age, an evident source of 
variance in our dataset. This means that apparent parameter generalization could be driven by a 
common dependence on age, rather than underlying age-independent similarities. To address this, 
we next focused on parameter age trajectories, aiming to remove differences between tasks that are 
potentially arbitrary (e.g. absolute mean and variance), while conserving patterns that are potentially 

Table 3. Statistical tests on age trajectories: mixed-effects regression models predicting z-scored 
parameter values from task (A, B, C), age, and squared age (months).
When the task-less model fitted best, the coefficients of this (‘grand’) model are shown, reflecting 
shared age trajectories (Table 2; ‍

1
β /ϵ‍, ‍α+‍, forgetting). When the age-based model fitted better, 

pairwise follow-up models are shown (‍α−‍), reflecting task differences. p-Values of follow-up models 
were corrected for multiple comparison using the Bonferroni correction. * ‍p < .05‍; ** ‍p < .01‍, *** 

‍p < .001‍.

Parameter Tasks Predictor ‍β‍ ‍p‍(Bonf.) sig.

‍
1
β /ϵ‍ A, B, C Intercept 1.86 ‍< 0.001‍ ***

Age (linear) –0.17 0.003 **

Age (quadratic) 0.004 ‍< 0.001‍ ***

‍α+‍ A, B, C Intercept –2.10 ‍< 0.001‍ ***

Age (linear) 0.20 ‍< 0.001‍ ***

Age (quadratic) –0.004 ‍< 0.001‍ ***

‍α−‍ B, C Task (main effect) 4.15 ‍< 0.001‍ ***

Task * linear age (interaction) 0.43 ‍< 0.001‍ ***

Task * quadratic age (interaction) –0.010 ‍< 0.001‍ ***

Forgetting A, C Intercept 0.37 0.44

Age (linear) –0.034 0.53

Age (quadratic) 0.001 0.63

Table 2. Assessing task effects on parameter age trajectories.
Model fits (AIC scores) of regression models predicting parameter age trajectories, comparing the 
added value of including (‘AIC with task’) versus excluding (‘AIC without task’) task as a predictor. 
Differences in AIC scores were tested statistically using F-tests. Better (smaller) model fits are 
highlighted in bold. The coefficients of the winning models (simpler model ‘without task’ unless 
adding task predictor leads to significantly better model fit) are shown in Table 3.

Parameter AIC without task AIC with task F(df) p sig.

‍
1
β /ϵ

‍
2,044 2,054 NA NA –

‍α+‍ 2,044 2,042 ‍F(4, 245) = 2.34‍ ‍p = 0.056‍ –

‍α−‍ 1,395 1,373 ‍F(2, 245) = 6.99‍ ‍p = 0.0011‍ **

Forgetting 1,406 1,411 NA NA –

https://doi.org/10.7554/eLife.75474
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more meaningful (e.g. shape of variance, i.e. 
participants’ values relative to each other). Age 
trajectories were calculated by z-scoring each 
parameter within each task (Figure  2C). To test 
for differences, mixed-effects regression was used 
to predict parameters of all tasks from two age 
predictors (age and squared age) and task (A, B, 
or C). A better fit of this model compared to the 
corresponding one without task indicates that 
task characteristics affected age trajectories. In 
this case, we followed up with post-hoc models 
comparing individual pairs of tasks.

For ‍α−‍, the task-based regression model 
showed a significantly better fit, revealing an 
effect of task on ‍α−‍’s age trajectory (Table  2). 
Indeed, ‍α−‍ showed fundamentally different 
trajectories in task B compared to C (in task A, 

‍α−‍ was fixed): In task B, ‍α−‍ decreased linearly, 
modulated by a U-shaped curvature (linear 
effect of age: ‍β = −0.11‍, ‍p < 0.001‍; quadratic: 

‍β = 0.003‍, ‍p < 0.001‍), but in task C, it increased 
linearly, modulated by an inverse-U curva-
ture (linear: ‍β = 0.32‍, ‍p < 0.001‍; quadratic: 

‍β = −0.07‍, ‍p < 0.001‍; Figure  2C). The fact that 
these patterns are opposites of each other was 
reflected in the significant interaction terms of 
the overall regression model (Table 3). Indeed, we previously reported a U-shaped trajectory of ‍α−‍ 
in task B, showing a minimum around age 13–15 (Eckstein et al., 2022), but a consistent increase 
up to early adulthood in task C (Xia et al., 2021). This shows striking differences when estimating 

‍α−‍ using task B compared to C. These differences might reflect differences in task demands: Nega-
tive feedback was diagnostic in task C, requiring large learning rates from negative feedback ‍α−‍ for 
optimal performance, whereas negative feedback was not diagnostic in task B, requiring small ‍α−‍ 
for optimal performance.

For ‍α+‍, adding task as a predictor did not improve model fit, suggesting that ‍α+‍ showed similar 
age trajectories across tasks (Table 2). Indeed, ‍α+‍ showed a linear increase that tapered off with age 
in all tasks (linear increase: task A: ‍β = 0.33‍, ‍p < 0.001‍; task B: ‍β = 0.052‍, ‍p < 0.001‍; task C: ‍β = 0.28‍, 

‍p < 0.001‍; quadratic modulation: task A: ‍β = −0.007‍, ‍p < 0.001‍; task B: ‍β = −0.001‍, ‍p < 0.001‍; task C: 

‍β = −0.006‍, ‍p < 0.001‍). For noise/exploration and forgetting parameters, adding task as a predictor 
also did not improve model fit (Table 2), suggesting similar age trajectories across tasks. For decision 
noise/exploration, the grand model revealed a linear decrease and tapering off with age (Figure 2C; 
Table 3), in accordance with previous findings (Nussenbaum and Hartley, 2019). For forgetting, the 
grand model did not reveal any age effects (Figure 2C; Table 3), suggesting inconsistent or lacking 
developmental changes.

In summary, ‍α−‍ showed different age trajectories depending on the task. This suggests a lack of 
generalizability: The estimated developmental trajectories of learning rates for negative outcomes 
might not generalize between experimental paradigms. However, the age trajectories of noise/explo-
ration parameters, ‍α+‍, and forgetting did not differ between tasks. This lack of statistically-significant 
task differences might indicate parameter generalizability—but it could also reflect high levels of 
parameter estimation noise. Subsequent sections will disentangle these two possibilities.

Predicting age trajectories
The previous analysis, focusing on parameter differences, revealed some lack of generalization (e.g. 

‍α−‍). The next analysis takes the inverse approach, assessing similarities in an effort to provide evidence 
for generalization: We used linear regression to predict participants’ parameters in one task from the 
corresponding parameter on another task, controlling for age and squared age.

Table 4. Statistics of the regression models 
predicting each parameter from the 
corresponding parameter in a different task, 
while controlling for age.
Results were identical when predicting task 
A from B and task B from A, for all pairs of 
tasks. Therefore, only one set of results is 
shown, and predictor and outcome task are 
not differentiated. Stars indicate significance as 
before; ‘$’ indicates ‍p < 0.1‍.

Parameter Tasks ‍β‍ p sig.

‍
1
β ‍, ‍ϵ‍ A & B 0.28 ***

A & C 0.19 0.0022 **

B & C 0.039 0.54

‍α+‍ A & B 0.13 0.035 *

A & C 0.23 ***

B & C –0.073 0.25

‍α−‍ B & C –0.12 0.058 $

Forgetting A & C 0.097 0.13

https://doi.org/10.7554/eLife.75474
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For both ‍α+‍ and noise/exploration parameters, task A predicted tasks B and C, and tasks B and 
C predicted task A, but tasks B and C did not predict each other (Table 4; Figure 2D), reminiscent 
of the correlation results (section 'Relative parameter differences'). For ‍α−‍, tasks B and C showed a 
marginally significant negative relationship (Table 4), suggesting that predicting ‍α−‍ between tasks 
can lead to systematically biased predictions, confirming the striking differences observed before 
(section 'Parameter age trajectories'). For forgetting, tasks A and C were not predictive of each other 
(Table 4), suggesting that the lack of significant differences we observed previously (Table 3) did not 
necessarily imply successful generalization, but might have been caused by other factors, for example, 
elevated noise.

Statistical comparison to generalizability ceiling
Our analyses so far suggest that some parameters did not generalize between tasks: We observed 
differences in age trajectories (section 'Parameter age trajectories') and a lack of mutual prediction 
(section 'Predicting age trajectories'). However, the lack of correspondence could also arise due to 
other factors, including behavioral noise, noise in parameter fitting, and parameter trade-offs within 
tasks. To rule these out, we next established the ceiling of generalizability attainable using our method.

We established the ceiling in the following way: We first created a dataset with perfect generaliz-
ability, simulating behavior from agents that use the same parameters across all tasks (Appendix 5—
figure 1). We then fitted this dataset in the same way as the human dataset (e.g. using the same 
models), and performed the same analyses on the fitted parameters, including an assessment of 
age trajectories (Appendix  5—table 1) and prediction between tasks (Appendix  5—table 2, 
Appendix  5—table 3, and Appendix  5—table 4). These results provide the practical ceiling of 
generalizability, given the limitations of our data and modeling approach. We then compared the 
human results to this ceiling to ensure that the apparent lack of generalization was a valid conclusion, 
rather than stemming from methodological constraints: If the empirical human dataset is significantly 
below ceiling, we can conclude a lack of generalization, but if it is not significantly different from the 
expected ceiling, our approach might lack validity.

The results of this analysis support our conclusions. Specifically, whereas humans had shown diver-
gent trajectories for parameter ‍α−‍ (Figure 2B; Table 1), the simulated agents (that used the same param-
eters for all tasks) did not show task differences for ‍α−‍ or any other parameter (Appendix 5—figure 
1B, Appendix 5—table 1), even when controlling for age (Appendix 5—table 2, Appendix 5—table 
3). Furthermore, the same parameters were predictive between tasks in all cases (Appendix 5—table 
4). These results show that our method reliably detected parameter generalization in a dataset that 
exhibited generalization.

Lastly, we established whether the degree of generalization in humans was significantly different 
from agents. To this aim, we calculated the Spearman correlations between each pair of tasks for each 
parameter, for both humans (section 'Relative parameter differences'; Appendix 8—figure 1) and 
agents, and then compared humans and agents using bootstrapped confidence intervals (Appendix 
5). Human parameter correlations were significantly below the ceiling for most parameters (excep-
tions: ‍α+‍ in A vs B; ‍ϵ‍ / ‍

1
β ‍ in A vs C; Appendix 5—figure 1C). This suggests that the human sample 

showed less-than-perfect generalization for most task combinations and most parameters: General-
ization was lower than in agents for parameters forgetting, ‍α−‍, ‍α+‍ (in two of three task combinations), 
and ‍ϵ‍ / ‍

1
β ‍ (in two of three task combinations).

Summary part I: Generalizability
So far, no parameter has shown generalization between tasks in terms of absolute values (Figure 2A 
and B), but noise/exploration and ‍α+‍ showed similar age trajectories (Figure 2C), at least in tasks 
that were sufficiently similar (Figure  2D). To summarize, (1) all parameters differed significantly 
between tasks in terms of absolute values (Figure  2A and B). Intriguingly, absolute parameter 
values varied more between tasks than between participants within tasks, suggesting that task 
demands played a larger role in determining parameter values than participants’ individual charac-
teristics. This was the case for all four model parameters (Noise/Exploration, ‍α+‍, ‍α−‍, and Forget-
ting). (2) However, there was evidence that in some cases, parameter age trajectories generalized 
between tasks: Task identity did not affect the age trajectories of noise/exploration, forgetting, or 
learning rate ‍α+‍ (Figure 2C), suggesting possible generalization. However, only noise/exploration 

https://doi.org/10.7554/eLife.75474
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and ‍α+‍ age trajectories were the same between tasks, hence revealing deeper similarities, and this 
was only possible when tasks were sufficiently similar (Table 4), highlighting the limits of general-
ization. No generalization was possible for ‍α−‍, whose age trajectory differed both qualitatively and 
quantitatively between tasks, showing striking inverse patterns. Like for absolute parameter values, 
differences in parameter age trajectories were likely caused by differences in task demands. (3) 
Parameter ‍α+‍ reached ceiling generalizability between tasks A and B, and parameter ‍ϵ‍ / ‍

1
β ‍ between 

tasks A and C. Generalizability of all other task combinations and parameters was significantly lower 
than expected from a perfectly-generalizing population. (4) For the parameters whose age trajec-
tories showed signs of generalization, our results replicated patterns in the literature, with noise/
exploration decreasing and ‍α+‍ increasing from childhood to early adulthood (Nussenbaum and 
Hartley, 2019).

Part II: Parameter interpretability
To address the second assumption identified above, Part II focuses on parameter interpretability, 
testing whether parameters captured specific, unique, and meaningful cognitive processes. To this 
end, we first investigated the relations between different parameters to assess whether individual 
parameters were uniquely interpretable (i.e. specific and distinct from each other). We then determined 
how parameters were related to observed behavior, seeking evidence for external interpretability.
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Figure 3. Identifying the major axes of variation in the dataset. A PCA was conducted on the entire dataset (39 behavioral features and 15 model 
parameters). The figure shows the factor loadings (y-axis) of of all dataset features (x-axis) for the first three PCs (panels A, B, and C). Features that 
are RL model parameters are bolded and in purple. Behavioral features are explained in detail in Appendix 1 and Appendix 3 (note that behavioral 
features differed between tasks). Dotted lines aid visual organization by grouping similar features across tasks (e.g. missed trials of all three tasks) or 
within tasks (e.g. working-memory-related features for task C). (A) PC1 captured broadly-defined task engagement, with negative loadings on features 
that were negatively associated with performance (e.g. number of missed trials) and positive loadings on features that were positively associated with 
performance (e.g. percent correct trials). (B–C) PC2 (B) and PC3 (C) captured task contrasts. PC2 loaded positively on features of task B (orange box) 
and negatively on features of task C (purple box). PC3 loaded positively on features of task A (green box) and negatively on features of tasks B and C. 
Loadings of features that are negative on PC1 are flipped in PC2 and PC3 to better visualize the task contrasts (section 'Principal component analysis 
(PCA)').
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Main axes of variation
To build a foundation for parameter interpretation, we first aimed to understand which cognitive 
processes and aspects of participant behavior were captured by each parameter. We opted for a 
data-driven approach, interpreting parameters based on the major axes of variance that emerged in 
our large dataset, identified without a priori hypotheses. Concretely, we used PCA to identify the prin-
cipal components (PCs) of our joint dataset of behavioral features and model parameters (Abdi and 
Williams, 2010). We first gained a thorough understanding of these PCs, and then employed them 
to better understand what was captured by model parameters. Detailed information on our approach 
is provided in sections 'Principal component analysis (PCA)' (PCA methods), 'Appendix 6' (behavioral 
features), and Appendix 8—figure 4 (additional PCA results).

We first analyzed PC1, the axis of largest variation and main source of individual differences in 
our dataset (25.1% of explained variance; Appendix 8—figure 4A). We found that behaviors that 
indicated good task participation (e.g. higher percentage of correct choices) loaded positively on 
PC1, whereas behaviors that indicated poor participation loaded negatively (e.g. more missed trials, 
longer response times; Figure 3A). This was the case for performance measures in the narrow sense 
of maximizing choice accuracy (e.g. percentage correct choices, trials to criterion, proportion of win-
stay choices), but also in the wider sense of reflecting task engagement (e.g. number of missed trials, 
response times, response time variability). PC1 therefore captured a range of ‘good’, task-engaged 
behaviors, and is likely similar to the construct of ‘decision acuity’ (Moutoussis et al., 2021): Decision 
acuity was recently identified as the first component of a factor analysis (variant of PCA) conducted 
on 32 decision-making measures on 830 young people, and separated good and bad performance 
indices. Decision acuity reflected generic decision-making ability, predicted mental health factors, and 
was reflected in resting-state functional connectivity, but distinct from IQ (Moutoussis et al., 2021). 
Like decision acuity Moutoussis et al., 2021, our PC1 increased significantly with age, consistent with 
increasing performance (Appendix 3—figure 1B; age effects of subsequent PCs in Appendix 8—
figure 4; Appendix 8—table 1).

How can this understanding of PC1 (decision acuity) help us interpret model parameters? In all 
three tasks, noise/exploration and forgetting parameters loaded negatively on PC1 (Figure  3A), 
showing that elevated decision stochasticity and the decay of learned information were associated 
with poorer performance in all tasks. ‍α+‍ showed positive loadings throughout, suggesting that faster 
integration of positive feedback was associated with better performance in all tasks. Taken together, 
noise/exploration, forgetting, and ‍α+‍ showed consistency across tasks in terms of their interpreta-
tion with respect to decision acuity. Contrary to this, ‍α−‍ loaded positively in task C, but negatively 
in task B, suggesting that performance increased when participants integrated negative feedback 
faster in task C, but performance decreased when they did the same in task B. As mentioned before, 
contradictory patterns of ‍α−‍ were likely related to task demands: The fact that negative feedback 
was diagnostic in task C likely favored fast integration of negative feedback, while the fact that nega-
tive feedback was not diagnostic in task B likely favored slower integration (Figure 1E). This inter-
pretation is supported by behavioral findings: ‘lose-stay’ behavior (repeating choices that produce 
negative feedback) showed the same contrasting pattern as ‍α−‍ on PC1, loading positively in task B, 
which shows that lose-stay behavior benefited performance, but negatively on task C, which shows 
that it hurt performance (Figure 3A). This supports the claim that lower ‍α−‍ was beneficial in task B, 
while higher ‍α−‍ was beneficial in task C, in accordance with participant behavior and developmental 
differences.

We next analyzed PC2 and PC3. For easier visualization, we flipped the loadings of all features 
with negative loadings on PC1 to remove the effects of task engagement (PC1) when interpreting 
subsequent PCs (for details, see section 'Principal component analysis (PCA)'). This revealed that 
PC2 and PC3 encoded task contrasts: PC2 contrasted task B to task C (loadings were positive / 
negative / near-zero for corresponding features of tasks B / C / A; Figure 3B). PC3 contrasted task 
A to both B and C (loadings were positive / negative for corresponding features on task A / tasks B 
and C; Figure 3C). (As opposed to most features of our dataset, missed trials and response times did 
not show these task contrasts, suggesting that these features did not differentiate between tasks). 
The ordering of PC2 before PC3 shows that participants’ behavior differed more between task B 
compared to C (PC2: 8.9% explained variance) than between B and C compared to A (PC3: 6.2%; 
Appendix 8—figure 4), as expected based on task similarity (Figure 1E). PC2 and PC3 therefore 

https://doi.org/10.7554/eLife.75474
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show that, after task engagement, the main variation in our dataset arose from behavioral differences 
between tasks.

How can this understanding of PC2-3 promote our understanding of model parameters? The task 
contrasts encoded by the main behavioral measures were also evident in several parameters, including 
noise/exploration parameters, ‍α+‍, and ‍α−‍: These parameters showed positive loadings for task B in 
PC2 (A in PC3), and negative loadings for task C (B and C; PC2: Figure 3B, PC3: 3 C). This indicates 
that noise/exploration parameters, ‍α+‍, and ‍α−‍ captured different behavioral patterns depending on 
the task: The variance present in these parameters allowed for the discrimination of all tasks from 
each other, with PC2 discriminating task B from C, and PC3 discriminating tasks B and C from A. In 
other words, these parameters were clearly distinguishable between tasks, showing that they did not 
capture the same processes. Had they captured the same processes across tasks, they would not be 
differentiable between tasks, similar to, for example, response times. What is more, each parameter 
captured sufficient task-specific variance to indicate in which task it was measured. In sum, these 
findings contradict the assumption that parameters are specific or interpretable in a task-independent 
way.

Taken together, the PCA revealed that the emerging major axes of variation in our large dataset, 
together capturing 40.2% of explained variance, were task engagement (PC1) and task differences 
(PC2-PC3). These dimensions can be employed to better understand model parameters: Task engage-
ment / decision acuity (PC1) played a crucial role for all four parameters (Figure 3A), and this role was 
consistent across tasks for noise/exploration, forgetting, and ‍α+‍. This consistency supports the claim 
that parameters captured specific, task-independent processes in terms of PC1. For ‍α−‍, however, PC1 
played inverse roles across tasks, showing a lack of task-independent specificity that was likely due 
to differences in task demands. Furthermore, PC2 and PC3 revealed that noise/exploration, ‍α+‍, and 

‍α−‍ specifically encoded task contrasts, suggesting that the parameters captured different cognitive 
processes across tasks, lacking a task-independent core of meaning.

Parameters and cognitive processes
Whereas the previous analysis revealed that parameter roles were not entirely consistent across tasks, 
it did not distinguish between parameter specificity (whether the same parameter captures the same 
cognitive processes across tasks) and distinctiveness (whether different parameters capture different 
cognitive processes).

To assess this, we probed how much parameter variance was explained by both corresponding 
and non-corresponding parameters across tasks: We predicted one parameter from all others to get 
a sense for which relationships were least and most explanatory, while accounting for all relation-
ships of all parameters, using regression. We assumed that parameters reflected one or more cogni-
tive processes, such that shared variance implies overlapping cognitive processes. If parameters are 
specific (i.e. reflect similar cognitive processes across tasks), then corresponding parameters should 
be predictive of each other (e.g. when predicting task B’s ‍

1
β ‍ from task A’s parameters, task A’s ‍

1
β ‍ should 

show a significant regression coefficient). If parameters are also distinct, then non-corresponding 
parameters should furthermore not be predictive (e.g. no other parameters beside task A’s ‍

1
β ‍ should 

predict task B’s ‍
1
β ‍). We used repeated, k-fold cross-validated Ridge regression to avoid overfitting, 

obtaining unbiased out-of-sample estimates of the means and variances of explained variance ‍R2‍ and 
regression coefficients ‍w‍ (for methods, see section 'Ridge regression').

Assessing general patterns that arose in this analysis, we found that all significant coefficients 
connected tasks A and B or tasks A and C but never tasks B and C, mirroring previous results 
(Figure 2D; section 'Relative parameter differences') with regard to task similarity (Figure 1E). This 
suggests that no parameter had a specific core that extended across all three tasks—the largest 
shared variance encompassed two tasks.

We first address parameter specificity. Focusing on noise/exploration parameters, coefficients were 
significant when predicting noise/exploration in task A from noise/exploration in tasks B or C, but the 
inverse was not true, such that coefficients were not significant when predicting tasks B or C from task 
A (Figure 4A; Table 5). The first result implies parameter specificity, showing that noise/exploration 
parameters captured variance (cognitive processes) in task A that they also captured in tasks B and C. 
The second result, however, implies a lack of specificity, showing that noise/exploration parameters 
captured additional cognitive processes in tasks B and C that they did not capture in task A. A further 

https://doi.org/10.7554/eLife.75474
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lack of specificity was evident in that even the variance that both B and C captured in A was not the 
same: Prediction accuracy increased when combining tasks B and C to predict task A, showing that 
noise/exploration parameters in tasks B and C captured partly non-overlapping aspects of noise/
exploration (Figure 4B, left-most set of bars, compare purple to orange and blue).

Focusing next on learning rates, specificity was evident in that learning rate ‍α+‍ in task A showed a 
significant regression coefficient when predicting learning rates ‍α+‍ and ‍α−‍ in task C, and learning rate 

‍α−‍ in task C showed a significant coefficient when predicting learning rate ‍α+‍ in task A (Figure 4A; 
Table 5). This suggests a shared core of cognitive processes between learning rates ‍α+‍ and ‍α−‍ in 
tasks A and C. However, a lack of specificity was evident in task B: When predicting ‍α+‍ in task B, no 
parameter of any task showed a significant coefficient (including ‍α+‍ in other tasks; Table 5), and it was 
impossible to predict variance in task B’s ‍α+‍ even when combining all parameters of the other tasks 
(Figure 4B, ‘Task B’ panel). This reveals that ‍α+‍ captured fundamentally different cognitive processes 
in task B compared to the other tasks. The case was similar for parameter ‍α−‍, which strikingly was 
inversely related between tasks A and B (Table 5), and impossible to predict in task B from all other 
parameters (Figure 4B). This reveals a fundamental lack of specificity, implying that learning rates in 
task B did not capture the same core of cognitive processes compared to other tasks.
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Figure 4. Assessing parameter interpretability by analyzing shared variance. (A) Parameter variance that is shared between tasks. Each arrow shows 
a significant regression coefficient when predicting a parameter in one task (e.g. ‍α+‍ in task A) from all parameters of a different task (e.g. ‍P‍, ‍α−‍, ‍α+‍, 
and ‍

1
β ‍ in task B). The predicted parameter is shown at the arrow head, predictors at its tail. Full lines indicate positive regression coefficients, and are 

highlighted in purple when connecting two identical parameters; dotted lines indicate negative coefficients; non-significant coefficients are not shown. 
Table 5 provides the full statistics of the models summarized in this figure. (B) Amount of variance of each parameter that was captured by parameters 
of other models. Each bar shows the percentage of explained variance (‍R2‍) when predicting one parameter from all parameters of a different task/
model, using Ridge regression. Part (A) of this figure shows the coefficients of these models. The x-axis shows the predicted parameter, and colors 
differentiate between predicting tasks. Three models were conducted to predict each parameter: One combined the parameters of both other tasks 
(pink), and two kept them separate (green, orange, blue). Larger amounts of explained variance (e.g., Task A ‍

1
β ‍ and ‍α−‍) suggest more shared processes 

between predicted and predicting parameters; the inability to predict variance (e.g. Task B ‍α+‍; Task C working memory parameters) suggests that 
distinct processes were captured. Bars show mean ‍R2‍, averaged over ‍k‍ data folds (‍k‍ was chosen for each model based on model fit, using repeated 
cross-validated Ridge regression; for details, see section 'Ridge regression'); error bars show standard errors of the mean across folds. (C) Relations 
between parameters and behavior. The arrows visualize Ridge regression models that predict parameters (bottom row) from behavioral features (top 
row) within tasks (full statistics in Table 6). Arrows indicate significant regression coefficients, colors denote tasks, and line types denote the sign of the 
coefficients, like before. All significant within-task coefficients are shown. Task-based consistency (similar relations between behaviors and parameters 
across tasks) occurs when arrows point from the same behavioral features to the same parameters in different tasks (i.e. parallel arrows). (D) Variance of 
each parameter that was explained by behavioral features; corresponds to the behavioral Ridge models shown in part (C).
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We next turned to distinctiveness, that is, whether different parameters capture different cognitive 
processes. Noise/exploration in task A was predicted by Persistence and ‍α−‍ in task B, and by ‍α−‍ 
and working memory weight ‍ρ‍ in task C (Figure 4A; Table 5). This shows that processes that were 
captured by noise/exploration parameters in task A were captured by different parameters in other 
tasks, such that noise/exploration parameters did not capture distinct cognitive processes.

In the case of learning rates, ‍α+‍ in task A was predicted nonspecifically by all parameters of task B 
(with the notable exception of ‍α+‍ itself; Figure 4A; Table 5), suggesting that the cognitive processes 
that ‍α+‍ captured in task A were captured by an interplay of several parameters in task B. Furthermore, 
task A’s ‍α+‍ was predicted by task C’s working memory parameters ‍ρ‍ and ‍K ‍ (Figure 4A; Table 5), 
suggesting that ‍α+‍ captured a conglomerate of RL and working memory processes in task A that was 
isolated by different parameters in task C (Collins and Frank, 2012). In support of this interpretation, 
no variance in task C’s working memory parameters could be explained by any other parameters 
(Figure 4B), suggesting that they captured unique working memory processes that were not captured 
by other parameters. Task C’s RL parameters, on the other hand, could be explained by parameters 
in other tasks (Figure 4B), suggesting they captured overlapping RL processes. In tasks B and C, ‍α+‍ 
and ‍α−‍ were partly predicted by other learning rate parameters (specific and distinct), partly not 

Table 5. Selected coefficients of the repeated, k-fold cross-validated Ridge regression models 
predicting one parameter from all parameters of a different task.
The table includes all significant coefficients and selected non-significant coefficients.

Predicted parameter (Task) Predicting parameter (Task) Coefficient ‍p‍ sig.

Noise/exploration (A) Exploration‍
1
β ‍ (B) 0.14 0.031 *

‍α−‍ (B) 0.14 0.032 *

Persistence (B) –0.19 0.0029 **

Noise ‍ϵ‍ (C) 0.12 0.038 *

‍α−‍ (C) –0.18 0.045 *

–0.19 0.023 *

Noise/exploration (B) Noise/exploration (A) 0.09 0.27 –

Noise/exploration (C) Noise/exploration (A) 0.04 0.63 –

‍α+‍ (A) ‍α−‍ (C) 0.22 0.011 *

‍ρ‍ (C) 0.16 0.050 *

‍K ‍ (C) 0.15 0.020 *

Exploration ‍
1
β ‍ (B) 0.19 0.0026 **

‍α−‍ (B) –0.21 ‍< 0.001‍ ***

‍α+‍ (B) 0.0042 0.94 –

Persistence (B) 0.23 ‍< 0.001‍ ***

‍α+‍(B) ‍
1
β ‍ (A) –0.077 0.37 –

‍α+‍ (A) 0.058 0.48 –

‍α+‍ (C) –0.00018 0.99 –

‍α−‍ (C) –0.000055 1.00 –

Forgetting (A) 0.015 0.82 –

‍α+‍ (C) ‍α+‍ (A) 0.20 0.013 *

‍α−‍ (B) ‍α+‍ (A) –0.25 0.0018 **

‍α−‍ (C)(C) ‍α+‍ (A) 0.24 0.0022 **

https://doi.org/10.7554/eLife.75474
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predicted at all (lack of specificity), and partly predicted by several parameters (lack of distinctiveness; 
Figure 4A).

In sum, in the case of noise/exploration, there was evidence for both specificity and a lack thereof 
(mutual prediction between some, but not all noise/exploration parameters). Noise/exploration param-
eters were also not perfectly distinct, being predicted by a small set of other parameters from different 
tasks. In the case of learning rates, some specificity was evident in the shared variance between tasks 
A and C, but that specificity was missing in task B. Distinctiveness was particularly low for learning 
rates, with variance shared widely between multiple different parameters. When conducting the same 
analyses in simulated agents using the same parameters across tasks (section 'Statistical comparison 
to generalizability ceiling'), we obtained much higher specificity and distinctiveness.

Parameters and behavior
The previous sections suggested that parameters captured different cognitive processes across tasks 
(i.e. different internal characteristics of learning and choice). We lastly examined whether parameters 
also captured different behavioral features across tasks (e.g. tendency to stay after positive feedback), 
and whether behavioral features generalized better. To investigate this question, we assessed the rela-
tionships between model parameters and behavioral features across tasks, using regularized Ridge 
regression as before, and predicting each model parameter from each task’s behavioral features (15 
predictors, see 'Appendix 1' and 'Appendix '6; for regression methods, see section 'Ridge regression').

We found that noise/exploration parameters were predicted by the same behavioral features in 
tasks A and B, such that task A’s accuracy, win-stay, and lose-stay behavior predicted task A’s ‍

1
β ‍; and 

task B’s accuracy, win-stay, and lose-stay behavior predicted task B’s ‍
1
β ‍ (Figure  4C; Table  6). This 

shows consistency in terms of which (task-specific) behaviors were related to (task-specific) param-
eter ‍

1
β ‍. Similarly for learning rates, ‍α+‍ was predicted by the same behavior (win-stay) in tasks A and 

Table 6. Statistics of selected coefficients in the repeated, k-fold cross-validated Ridge regression 
models predicting each model parameter from all behavioral features of all three tasks.
The table includes all significant coefficients of within-task predictors, and a selected number of non-
significant and between-task coefficients.

Predicted parameter (Task) Predicting parameter (Task) coefficient ‍p‍ sig.

Noise/exploration (A) Win-stay (A) –0.30 <0.001 ***

Lose-stay (A) –0.23 <0.001 ***

Accuracy (A) –0.19 0.0076 **

Response times (A) 0.092 0.029 *

Delay (A) 0.25 <0.001 ***

Noise/exploration (B) Win-stay (B) –0.58 <0.001 ***

Lose-stay (B) 0.091 0.0034 **

Accuracy (B) –0.36 <0.001 ***

Win-stay (A) –0.12 0.032 *

Response times (A) 0.059 0.051 –

‍α+‍ (A) Win-stay (A) 0.74 <0.001 ***

‍α+‍ (B) Win-stay (B) 0.27 <0.001 ***

‍α+‍ (C) Accuracy (C) 0.24 0.033 *

‍α−‍ (B) Win-stay (B) 0.29 <0.001 ***

Lose-stay (B) –0.71 <0.001 ***

Accuracy (B) –0.28 <0.001 ***

‍α−‍ (C) Win-stay (C) 0.16 0.009 **

Lose-stay (C) –0.41 <0.001 ***

https://doi.org/10.7554/eLife.75474
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B, and ‍α−‍ was predicted by the same behaviors (lose-stay, win-stay) in tasks B and C (Figure 4C; 
Table 6). This consistency in ‍α−‍ is especially noteworthy given the pronounced lack of consistency in 
the previous analyses.

In sum, noise/exploration parameters, ‍α+‍, and ‍α−‍ successfully generalized between tasks in terms 
of which behaviors they reflected (Figure 4C), despite the fact that many of the same parameters did 
not generalize in terms of how they characterized participants (sections 'Differences in absolute param-
eter values', 'Relative parameter differences', and 'Parameter age trajectories'), and which cognitive 
processes they captured (sections 'Main axes of variation and parameters and cognitive processes'). 
Notably, the behavioral and parameter differences we observed between tasks often seemed tuned to 
specific task characteristics (Figure 1E), both in the case of parameters (most notably ‍α−‍; Figures 2C 
and 3A) and behavior (most notably lose-stay behavior; Appendix 3—figure 1B), suggesting that 
both behavioral responses and model parameters were shaped by task characteristics. This suggests 
a succinct explanation for why parameters did not generalize between tasks: Because different tasks 
elicited different behaviors (Appendix 3—figure 1B), and because each behavior was captured by the 
same parameter across tasks (Figure 4C), parameters necessarily differed between tasks.

Discussion
Both generalizability (Nassar and Frank, 2016) and interpretability (i.e. the inherent ‘meaningful-
ness’ of parameters Huys et al., 2016) have been stated as advantages of computational modeling, 
and many current research practices (e.g. comparing parameter-specific findings between studies) 
endorse them (Eckstein et al., 2021). However, RL model generalizability and interpretability has so 
far eluded investigation, and growing inconsistencies in the literature potentially cast doubt on these 
assumptions. It is hence unclear whether, to what degree, and under which circumstances we should 
assume generalizability and interpretability. Our developmental, within-participant study revealed 
that these assumptions warrant both increased scepticism and continued investigation: Generaliz-
ability and interpretability were suprisingly low for most parameters and tasks, but reassuringly high 
for a few others:

Exploration/noise parameters showed considerable generalizability in the form of correlated vari-
ance and age trajectories. Furthermore, the decline in exploration/noise we observed between ages 
8–17 was consistent with previous studies (Nussenbaum and Hartley, 2019; Somerville et al., 2017; 
Gopnik, 2020), revealing consistency across tasks, models, and research groups that supports the 
generalizability of exploration/noise parameters. Still, for 2/3 pairs of tasks, the degree of generaliza-
tion was significantly below the level of generalization expected by agents with perfect generalization.

Interpretability of exploration/noise parameters was mixed: Despite evidence for specificity in 
some cases (overlap in parameter variance between tasks), it was missing in others (lack of overlap), 
and crucially, parameters lacked distinctiveness (substantial overlap in variance with other parame-
ters). Thus, while exploration/noise parameters were generalizable across tasks, they were not neuro-
cognitively “interpretable” (as defined above).

Learning rate from negative feedback showed a substantial lack of generalizability: parameters were 
less consistent within participants than within tasks, and age trajectories differed both quantitatively 
and qualitatively. Learning rates from positive feedback, however, showed some convincing patterns 
of generalization. These results are consistent with the previous literature, which shows mixed results 
for learning rate parameters (Nussenbaum and Hartley, 2019). In terms of interpretability, learning 
rates from positive and negative feedback combined were somewhat specific (overlap in variance 
between some tasks). However, a lack of specificity (lack of shared core variance) and distinctiveness 
(fundamental entangling with several other parameters, most notably working memory parameters) 
overshadowed this result.

Taken together, our study confirms the patterns of generalizable exploration/noise parameters 
and task-specific learning rate parameters that are emerging from the literature (Nussenbaum and 
Hartley, 2019). Furthermore, we show that this is not a result of between-participant comparisons, 
but that the same participants will show different parameters when tested using different tasks. The 
inconsistency of learning rate parameters leads to the important conclusion that we cannot measure 
an individual’s ‘intrinsic learning rate’, and that we should not draw general conclusions about ‘the 
development of learning rates’ with the implication that they apply to all contexts.

https://doi.org/10.7554/eLife.75474
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These findings help clarify the source of parameter inconsistencies in previous literature (besides 
replication problems and technical issues, such as model misspecification [Nussenbaum and Hartley, 
2019], lack of model comparison and validation [Palminteri et al., 2017; Wilson and Collins, 2019], 
lack of model critique [Nassar and Frank, 2016], inappropriate fitting methods [Daw, 2011; Lee, 
2011], and lack of parameter reliability [Brown et al., 2020]): Our results show that discrepancies 
are expected even with a consistent methodological pipeline and up-to-date modeling techniques, 
because they are an expected consequence of variations in context (e.g. features of the experimental 
task [section Parameters and behavior] and the computational model). The results also suggest that 
the mapping between cognitive processes and exhibited behavior is many-to-many, such that different 
cognitive mechanisms (e.g. reasoning, value learning, episodic memory) can give rise to the same 
behaviors (e.g. lose-stay behavior) and parameters (e.g. ‍α−‍), while the same cognitive mechanism 
(e.g. value learning) can give rise to different behaviors (e.g. win-stay, lose-shift) and influence several 
parameters (e.g. ‍α+‍, ‍α−‍), depending on context factors. Under this view, analysis of model parame-
ters alone does not permit unequivocal conclusions about cognitive processes if the context varies 
(Figure 5B), and the interpretation of model parameter results requires careful contextualization.

Future research needs to investigate context factors to characterize these issues in more detail. For 
example, which task characteristics determine which parameters will generalize and which will not, 
and to what extent? Does context impact whether parameters capture overlapping versus distinct 
variance? Here, the systematic investigation of task space (i.e., testing the same participants on a large 
battery of learning tasks created as the full factorial of all task features) could elucidate the relation-
ships between parameter generalizability and task-based context factors (e.g., stochasticity, volatility, 
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Process B ...

Behavior 1 Behavior 2 Behavior 3

Parameter 1 Parameter 2 Parameter 3

Any learning task

Parameter 1 Parameter 2 Parameter 3

Based on the task
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Figure 5. What do model parameters measure? (A) View based on generalizability and interpretability. In this view, which is implicitly endorsed by much 
current computational modeling research, models are fitted in order to reveal individuals’ intrinsic model parameters, which reflect clearly delineated, 
separable, and meaningful (neuro)cognitive processes, a concept we call interpretability. Interpretability is the assumption that every model parameter 
captures a specific cognitive process (bidirectional arrows between each parameter and process), and that cognitive processes are separable from each 
other (no connections between processes). Task characteristics are treated as irrelevant, a concept we call generalizability, such that parameters of any 
learning task (within reason) are expected to capture similar cognitive processes. (B) Updated view, based on our results, that acknowledges the role of 
context (e.g. task characteristics, model parameterization, participant sample) in computational modeling. Which cognitive processes are captured by 
each model parameter is influenced by context (green, orange, blue), as shown by distinct connections between parameters and cognitive processes. 
Different parameters within the same task can capture overlapping cognitive processes (not interpretable), and the same parameters can capture 
different processes depending on the task (not generalizable). However, parameters likely capture consistent behavioral features across tasks (thick 
vertical arrows).

© 2021, Elsevier. Figure 5 is reprinted from Figure 3 from Eckstein et al., 2021, with permission from Current Opinion in Behavioral Sciences. It is not 
covered by the CC-BY 4.0 license and further reproduction of this panel would need permission from the copyright holder.
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reward probability). To determine the distance between tasks, the MDP framework might be espe-
cially useful because it decomposes tasks along theoretically meaningful features. Future research will 
also need to determine the relative contributions of different sources of inconsistency, differentiating 
those caused by technical issues from those caused by context differences.

In sum, our results suggest that relating model parameters to cognitive constructs and real-world 
behavior might require us to carefully account for task variables and environmental variability in 
general. This ties into a broader open question of how neurocognitive processes are shared between 
tasks (Eisenberg et  al., 2019; Moutoussis et  al., 2021), and reflects a larger pattern of thought 
in psychology that we cannot objectively assess an individual’s cognitive processing while ignoring 
context. We have shown that in lab studies, different task contexts recruit different system settings 
within an individual; similarly, our real-life surroundings, the way they change during development, 
and our past environments (Lin et al., 2020; Lin et al., 2022) may also modulate which cognitive 
processes we recruit.

Limitations
Our study faces several potential limitations, both due to the technical aspects of model creation and 
selection, and to the broader issue of parameter reliability. One potential technical limitation is the 
existence of within-model parameter correlations. These correlations may mean the values of param-
eters of the same model trade off during fitting, potentially leading to lower parameter correlations 
between models, and decreased estimates of parameter generalizability. However, this limitation 
is unlikely to affect our overall conclusion: Our simulation analysis showed that generalization was 
detectable despite this issue (section 'Statistical comparison to generalizability ceiling'), suggesting 
that we would have been able to detect more generalization in humans if it had been present. Further-
more, the majority of previous work using computational models to study human behavior is subject 
to the same within-model parameter tradeoffs (e.g. common negative correlation between ‍α‍ and ‍β‍ in 
RL models), meaning that the results of our study likely give a realistic estimate of expected parameter 
generalization in the current literature.

Another limitation relates to the potential effects of model misspecification on our results. An 
example of model misspecification is the failure to include a variable in the model that was relevant 
in the data-generating process (e.g. outcome-independent choice persistence); such misspecification 
can lead to the inaccurate estimation of other parameters in the model (e.g. learning rate [Katahira, 
2018]). In our study, model misspecification—if present—could account for some of the lack of gener-
alization we observed. As for the previous limitation, however, the fact that model misspecification is 
likely a ubiquitous feature of the current modeling literature (and potentially fundamentally unattain-
able when fitting complex data-generating processes such as human decision makers) means that our 
results likely provide a realistic picture of the generalizability of current models.

Another potential limitation is the difference between the models for each task, despite shared 
or overlapping cognitive processes. It is possible, for example, that parameters would generalize 
better if the same model had been used across tasks. The current dataset, however, is not suitable to 
answer this question: It would be impossible to fit the same model to each task due to issues of model 
misspecification (when using a model that is too simple) or violation of the principle of simplicity (when 
using a model that is too complex; for details, see 'Appendix 7'). Future research will be required to 
address this issue, and to potentially dissociate the effects of model differences and task differences 
we here jointly call ‘context’.

Lastly, model parameter reliability might play a crucial role for our results: If parameters lack consis-
tency between two instantiations of the same task (reliability), generalization between different tasks 
would necessarily be low as well. A recent wave of research, however, has convincingly demonstrated 
that good reliability is possible for several common RL models (Brown et al., 2020; Shahar et al., 
2019; Pratt et al., 2021; Waltmann et al., 2022), and we employ the recommended methods here 
(Xia et al., 2021; Eckstein et al., 2022). In addition, our simulation analysis shows that our approach 
can detect generalization.

In conclusion, a variety of methodological issues could explain (part of) the lack of generalization 
we find for most parameters in the human sample. However, these issues cannot explain all of our 
results because the same approach successfully detects generalization in a simulated dataset. Further-
more, none of these issues are unique to our approach, but likely ubiquitous in the current modeling 
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literature. This means that our results likely provide a realistic estimate of parameter generalization 
based on current methods. A more detailed discussion of each limitation is provided in 'Appendix 7'.

Moving forward
With this research, we do not intend to undermine RL modeling as a practice, or challenge pre-
existing findings drawn from it, but to improve its quality. Computational model parameters poten-
tially provide highly valuable insights into (neuro)cognitive processing—we just need to refrain from 
assuming that the identified processes are always—through their mere nature as model parameters—
specific, distinct, and ‘theoretically meaningful’ (Huys et al., 2016). Some parameters with the same 
names do not tend to transfer between different tasks, making them non-interchangeable, while 
others seem to transfer well. And in all cases, the behavioral features captured by parameters seem 
to generalize well. In the long term, we need to understand why RL parameters differ between tasks. 
We suggest three potential, not mutually exclusive answers:

1.	 Adaptation and Optimality. Variance in RL parameters may reflect how participants adapt 
their behavior to task demands, an explanation proposed by Nussenbaum and Hartley, 
2019. Whereas it is commonly assumed that parameters reflect participants’ intrinsic cognitive 
‘settings’ (e.g. 10-year-olds have a learning rate of 20%; 16-year-olds of 40%), the optimality-
based view suggests that participants instead adaptively tune parameters to task characteristics 
(e.g. adopting lower learning rates in stable than volatile contexts [Behrens et al., 2007; Nassar 
et al., 2016]). Hence, different tasks lead to different parameter estimates because different 
values are required for optimal behavior; an ‘optimal’ participant—achieving optimal behavior 
in each task—would therefore naturally show different values across tasks. Similar optimality-
based views are held by others (McGuire et al., 2014). If adaptation to achieve optimality exists, 
then we would also predict, for example, that learning rates differ between deterministic and 
stochastic tasks because each task requires different amounts of behavioral change in response 
to feedback to reach optimal performance. We indeed observed this pattern in the current 
study. Age differences in parameters can be explained as differences in adaptation flexibility 
and/or differences in optimal settings due to interaction with different environments. Partici-
pants might require differing levels of change detection or adaptation abilities, depending on 
their developmental stage (e.g. adolescent cognition may be better adapted to changing envi-
ronments). More research is needed, however, to determine whether parameter optimality and 
the capacity to optimize behavior can explain all inconsistencies in the literature. For example, 
our finding that participants showed the most optimal learning rates in the intermediate age 
range in task B (Eckstein et al., 2022), whereas optimality increased monotonously with age in 
tasks A and C (Master et al., 2020; Xia et al., 2021), suggests that other factors besides opti-
mization might play a role as well.

2.	 Modulatory processes. RL parameters may vary as a function of modulatory processes that are 
not well-captured in current RL models. Modulatory processes have been described in cogni-
tion and neurobiology and likely serve to shift functional outputs (e.g. hunger increasing moti-
vation [Berridge, 2007; Yu and Dayan, 2005; Bouret and Sara, 2005]). Some modulatory 
processes reflect external contextual information (e.g. uncertainty affects dopamine neuron 
firing [Gershman, 2017; Starkweather et al., 2018; Gershman and Uchida, 2019]), and RL 
processes might depend on these same modulatory processes (e.g. RL reward-prediction errors 
and dopamine [Schultz et al., 1997]). Indeed, environments with different degrees of uncer-
tainty have been shown to elicit different learning rates (Behrens et al., 2007; Lin et al., 2022), 
and EEG markers of neuromodulator release predicted learning rates (Jepma et al., 2016). It is 
thus possible that neuromodulation by task uncertainty modulates RL processes, reflected in RL 
parameters. In our data, feedback stochasticity and task volatility likely contribute to uncertainty-
related modulation. However, other factors like task similarity, task volatility (Behrens et al., 
2007; Eckstein et al., 2022; Nassar et al., 2016), feedback stochasticity, memory load (Master 
et  al., 2020; Collins and Frank, 2012), feedback valence and conditioning type (Garrison 
et al., 2013), and choice of model parameters (e.g. forgetting [Master et al., 2020; Xia et al., 
2021]), counter-factual learning (Eckstein et  al., 2022), negative and positive learning rates 
(Harada, 2020; Katahira, 2018; Sugawara and Katahira, 2021), have also been shown to 
affect RL parameters, but are independent of uncertainty. More research is therefore needed to 
investigate the extent of the contribution of modulatory processes, and its impact on cognition 
and computation.

3.	 RL processes are multifaceted. RL parameters capture a multitude of cognitive processes, 
whose composition likely differs across tasks (Figure 5B; Eckstein et al., 2021). RL algorithms 
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are framed in the most general way to allow application to a wide range of contexts, including 
AI, neuroscience, and psychology (Sutton and Barto, 2017; Eckstein et al., 2021; Lake et al., 
2017; Collins, 2019). As behavioral models, their use has spanned a variety of behaviors, 
meaning that the same parameters capture cognitive processes that vary considerably in type 
and complexity: For example, the same RL parameters have been said to capture the slow acqui-
sition of implicit preferences (Schultz et al., 1997), long-term memory for preferences (Collins, 
2018), quick recognition of contingency switches (Eckstein et al., 2022; Tai et al., 2012), selec-
tion of abstract high-level strategies (Eckstein and Collins, 2020; Collins and Koechlin, 2012; 
Donoso et al., 2014), meta-learning (Wang et al., 2018), habitual and goal-directed decision 
making (Daw et al., 2011), working memory or episodic memory-guided choice (Collins and 
Frank, 2012; Bornstein and Norman, 2017; Vikbladh et al., 2019), and many others. This list 
of cognitive processes outnumbers the list of typical RL model parameters, suggesting that RL 
parameters necessarily capture different (combinations of) cognitive processes depending on 
the paradigm. Indeed, adaptive learning does not seem to be a unitary phenomenon, but seems 
to be composed of several distinct neuro-cognitive factors (McGuire et al., 2014).

Conclusion
Our research has important implications for computational modeling in general, and specifically 
for fields that focus on individual differences, including developmental and clinical computational 
research: We show that contextual factors critically impact computational modeling results. Larger, 
targeted studies will be necessary to identify the most important contextual factors and their precise 
roles, and to quantify their effects. Other areas of modeling besides RL might face similar issues, 
given that generalizability and interpretability are also commonly assumed in models of sequential 
sampling (Sendhilnathan et al., 2020; McDougle and Collins, 2021), Bayesian inference (Eckstein 
et al., 2022; Radulescu et al., 2019; Konovalov and Krajbich, 2018), model-based versus model-
free RL (Brown et al., 2020; Kool et al., 2016; Hare, 2020), and others.

If a model parameter lacks generalizability and/or interpretability, it does not measure task-
independent, person-specific characteristics, as we often assume. This parameter is more closely 
tied to the specific, contextual factors of experimental paradigms, and should be interpreted within 
the context of that task, and only compared between studies with the clear understanding of this 
task-dependence. We hope that acknowledging this will help the field of computational modeling to 
accurately interpret computational models (in direct relation to the experimental task), to combine 
insights of different studies (by taking into account differences in parameter optimality, modulatory 
factors, and processes captured by each parameter), and to achieve improved generalizability and 
interpretability of findings in the future. This work aims not to discourage the use of RL models to 
model behavior, but to improve the application of these models, in particular the robustness of the 
conclusions we draw from their fits.

Materials and methods
Study design
Our sample of 291 participants was balanced between females and males, and all ages (8–30 years) 
were represented equally (Figure 1A, left). Participants completed four computerized tasks, question-
naires, a saliva sample during the 1–2 hr lab visit, and another take-home sample (see section 'Testing 
procedure'). To reduce noise, we excluded participants based on task-specific performance criteria 
(see section 'Participant sample'). Due to worse performance, more younger than older participants 
were excluded, which is a caveat for the interpretation of age effects (note, however, that these exclu-
sions cannot account for the observed age effects but act against them; Figure 1A). Our tasks—A 
(‘Butterfly task’ Xia et al., 2021; Davidow et al., 2016), B (‘Stochastic Reversal’ Tai et al., 2012; 
Eckstein et al., 2022), and C (‘Reinforcement learning-Working memory’ Master et al., 2020; Collins 
and Frank, 2012)—were all classic reinforcement learning tasks: on each trial, participants chose 
between several actions in an effort to earn rewards, which were presented as binary feedback (win/
point or lose/no point) after each choice.

The tasks varied on several common dimensions (Figure 1E), which have been related to discrep-
ancies in behavioral and neurocognitive results in the literature (Garrison et al., 2013; Yaple and Yu, 
2019; Liu et al., 2016). For example, in one task (task C), positive feedback was deterministic, such 
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that every correct action led to a positive outcome, whereas in the two other tasks (tasks A and B), 
positive feedback was stochastic, such that some correct actions led to positive and others to nega-
tive outcomes. A different set of two tasks (B and C) provided diagnostic positive feedback, such that 
every positive outcome indicated a correct action, whereas in the third (A), positive feedback was non-
diagnostic, such that positive outcomes could indicate both correct and incorrect actions. Two tasks (A 
and C) presented several different stimuli/states for which correct actions had to be learned, whereas 
the third (B) only presented a single one. Overall, task A shared more similarities with both tasks B and 
C than either of these shared with each other, allowing us to ask the exploratory question whether task 
similarity played a role in parameter generalizability and interpretability. A comprehensive list of task 
differences is shown in Figure 1E, and each task is described in more detail in section 'Task design'. 
Section 'Appendix 3' explains the most prominent findings of each task individually, and shows several 
behavioral measures over age.

Participant sample
Sample overview
All procedures were approved by the Committee for the Protection of Human Subjects at the Univer-
sity of California, Berkeley, with reference number 2016-06-8925. We tested 312 participants: 191 
children and adolescents (ages 8–17) and 55 adults (ages 25–30) were recruited from the community 
and completed a battery of computerized tasks, questionnaires, and saliva samples; 66 university 
undergraduate students (aged 18–50) completed the four tasks as well, but not the questionnaires 
or saliva sample. Community participants of all ages were pre-screened for the absence of present 
or past psychological and neurological disorders; the undergraduate sample indicated the absence 
of these. Compensation for community participants consisted of $25 for the 1–2 hr in-lab portion of 
the experiment and $25 for completing optional take-home saliva samples; undergraduate students 
received course credit for participation in the 1-hr study.

Participant exclusion
Two participants from the undergraduate sample were excluded because they were older than 30, 
and 7 were excluded because they failed to indicate their age. This led to a sample of 191 community 
participants under 18, 57 undergraduate participants between the ages of 18–28, and 55 community 
participants between the ages of 25–30. Of the 191 participants under 18, 184 completed task B, 
and 187 completed tasks A and C. Reasons for not completing a task included getting tired, running 
out of time, and technical issues. All 57 undergraduate participants completed tasks B and C and 
55 completed task A. All 55 community adults completed tasks B and A, and 45 completed task C. 
Appropriate exclusion criteria were implemented separately for each task to exclude participants who 
failed to pay attention and who performed critically worse than the remaining sample (for task A, see 
Xia et al., 2021; task B Eckstein et al., 2022; task C Master et al., 2020). Based on these criteria, 5 
participants under the age of 18 were excluded from task B, 10 from task A, and none from task C. 
One community adult participant was excluded from task A, but no adult undergraduates or commu-
nity participants were excluded from tasks B or C.

Because this study related the results from all three tasks, we only included participants who were 
not excluded in any task, leading to a final sample of 143 participants under the age of 18 (male: 77; 
female: 66), 51 undergraduate participants (male: 17; female: 34), and 53 adults from the community 
(male: 25; female: 28), for a total of 247 participants (male: 119; female: 128). We excluded the fourth 
task of our study from the current analysis, which was modeled after a rodent task and used in humans 
for the first time (Johnson and Wilbrecht, 2011), because the applied performance criterion led to 
the exclusion of the majority of participants under 18. We split participants into quantiles based on 
age, which were calculated separately within each sex (for details, see Eckstein et al., 2022).

Testing procedure
After entering the testing room, participants under 18 years and their guardians provided informed 
assent and permission; participants over 18 provided informed consent. Guardians and participants 
over 18 filled out a demographic form. Participants were led into a quiet testing room in view of their 
guardians, where they used a video game controller to complete four computerized tasks, in the 
following order: The first task was called ‘4-choice’ and assessed reversal learning in an environment 
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with 4 different choice options, with a duration of approximately 5 min (designed after Johnson and 
Wilbrecht, 2011). This task was excluded from the current analysis (see section 'Participant exclu-
sion'). The second task was C (‘Reinforcement learning-Working memory’) and took about 25 min to 
complete (Collins and Frank, 2012; Master et al., 2020). After the second task, participants between 
the ages of 8–17 provided a saliva sample (for details, see Master et al., 2020) and took a snack 
break (5–10 min). After that, participants completed task A (‘Butterfly task’), which took about 15 min 
(Davidow et al., 2016; Xia et al., 2021), and task B (‘Stochastic Reversal’), which took about 10 min 
to complete (Eckstein et al., 2022). At the conclusion of the tasks, participants between 11 and 18 
completed the Pubertal Development Scale (PDS Petersen et al., 1988) and were measured in height 
and weight. Participants were then compensated with $25 Amazon gift cards. For subjects under 11, 
their guardians completed the PDS on their behalf. The PDS questionnaire and saliva samples were 
administered to investigate the role of pubertal maturation on learning and decision making. Pubertal 
analyses are not the focus of the current study and will be or have been reported elsewhere (Master 
et al., 2020; Eckstein et al., 2022; Xia et al., 2021). For methodological details, refer to Master 
et al., 2020. The entire lab visit took 60–120 min, depending on the participant, and the order of 
procedures was the same for all subjects.

Task design
Task A (‘butterfly task’)
The goal of task A was to collect as many points as possible, by guessing correctly which of two 
flowers was associated with each of four butterflies. Participants were instructed to guess which 
flower each butterfly liked more, having been told that butterflies would sometimes also choose the 
less-liked flower (i.e. act probabilistically). Correct guesses were rewarded with 70% probability, and 
incorrect guesses with 30%. The task contained 120 trials (30 for each butterfly) that were split into 4 
equal-sized blocks, and took between 10 and 20 min to complete. More detailed information about 
methods and results can be found in Xia et al., 2021.

Task B (‘stochastic reversal’)
The goal of task B was to collect golden coins, which were hidden in two green boxes. Participants 
completed a child-friendly tutorial, in which they were instructed to help a leprechaun find his treasure 
by collecting individual coins from two boxes. Task volatility (i.e. boxes switching sides) and stochas-
ticity (i.e. correct box not rewarded each time) were introduced one-by-one (for details, see Eckstein 
et al., 2022). The task could be in one of two states: ‘Left box is correct’ or ‘Right box is correct’. In 
the former, selecting the left box led to reward in 75% of trials, while selecting the right box never led 
to a reward (0%). Several times throughout the task, task contingencies changed unpredictably and 
without notice (after participants had reached a performance criterion indicating they had learned the 
current state), and the task switched states. Participants completed 120 trials of this task (2–9 rever-
sals), which took approximately 5–15 min. For more information and additional task details, refer to 
Eckstein et al., 2022.

Task C (‘reinforcement learning-working memory’)
The goal of task C was to collect as many points as possible by pressing the correct key for each stim-
ulus. Participants were instructed to learn an ‘alien language’ of key presses by associating individual 
pictures with specific key presses. Pressing the correct key for a specific stimulus deterministically 
led to reward, and the correct key for a stimulus never changed. Different blocks required subjects 
to learn about different numbers of stimuli, with set sizes ranging from 2 to 5 images. In each block, 
each stimulus was presented 12–14 times, for a total of 13 * set size trials per block. Three blocks had 
set sizes of 2–3, and 2 blocks had set sizes of 4–5, for a total of 10 blocks. The task took between 15 
and 25 minutes to complete. For more details, as well as a full analysis of this dataset, refer to Master 
et al., 2020.

Computational models
For all tasks, we used RL theory to model how participants adapted their behavior in order to maxi-
mize reward. RL models assume that agents learn a policy ‍π(a|s)‍ that determines (probabilistically) 
which action ‍a‍ to take in each state ‍s‍ of the world (Sutton and Barto, 2017). Here and in most 
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cognitive RL models, this policy is based on action values ‍Q(a|s)‍, that is, the values of each action ‍a‍ in 
each state ‍s‍. Agents learn action values by observing the reward outcomes, rt, of their actions at each 
time step ‍t‍. Learning consists of updating existing action values ‍Qt(a|s)‍ using the ‘reward prediction 
error’, the difference between the expected reward ‍Qt(a|s)‍ and the actual reward rt:

	﻿‍ Qt+1(a|s) = Qt(a|s) + α(rt − Qt(a|s))‍�

How much a learner weighs past action value estimates relative to new outcomes is determined by 
parameter ‍α‍, the learning rate. Small learning rates favor past experience and lead to stable learning 
over long time horizons, while large learning rates favor new outcomes and allow for faster and more 
flexible changes according to shorter time horizons. With enough time and in a stable environment, 
the RL updating scheme guarantees that value estimates will reflect the environment’s true reward 
probabilities, and thereby allow for optimal long-term choices (Sutton and Barto, 2017).

In order to choose actions, most cognitive RL models use a (noisy) ‘softmax’ function to translate 
action values ‍Q(a|s)‍ into policies ‍p(a|s)‍:

	﻿‍
p(ai|s) = exp(β Q(ai |s))∑

aj∈A exp(β Q(aj |s))‍�

‍A‍ refers to the set of all available actions (tasks A and B have 2 actions, task C has 3), and ai and 
aj to individual actions within the set. How deterministically versus noisily this translation is executed 
is determined by exploration parameter ‍β‍, also called inverse decision temperature, and/or ‍ϵ‍, the 
decision noise (see below). Small decision temperatures ‍

1
β ‍ favor the selection of the highest-valued 

actions, biasing an agent towards exploitation, whereas large decision temperatures select actions of 
low and high values more evenly, enabling exploration. Parameter ‍ϵ‍ adds undirected noise to action 
selection, selecting random actions with a small probability ‍ϵ‍ on each trial.

Besides ‍α‍, ‍β‍, and noise, cognitive RL models often include additional parameters to better fit 
empirical behavior in humans or animals. Common choices include Forgetting—a consistent decay of 
action values back to baseline—, and Persistence—the tendency to repeat the same action indepen-
dent of outcomes, a parameter also known as sticky choice or perseverance (Sugawara and Kata-
hira, 2021). In addition, cognitive models often differentiate learning from positive versus negative 
rewards, splitting learning rate ‍α‍ into two separate parameters ‍α+‍ and ‍α−‍, which are applied to only 
positive and only negative outcomes, respectively (Harada, 2020; Javadi et al., 2014; Christakou 
et al., 2013; van den Bos et al., 2012; Frank et al., 2004; Cazé and van der Meer, 2013; Palminteri 
et  al., 2016; Lefebvre et  al., 2017; Dabney et  al., 2020). The next paragraphs introduce these 
parameters in detail.

In task A, the best fitting model included a forgetting mechanism, which was implemented as a 
decay in Q-values applied to all action values of the three stimuli (butterflies) that were not shown on 
the current trial:

	﻿‍ Qt+1(a|s) = (1 − f) ∗ Qt+1(a|s) + f ∗ 0.5.‍�

The free parameter ‍0 < 1‍ reflects individuals’ tendencies to forget.
In task B, free parameter ‍P‍ captured choice persistence, which biased choices on the subsequent 

trial toward staying (‍P > 0‍) or switching (‍P < 0‍). ‍P‍ modifies action values ‍Q(a|s)‍ into ‍Q′(a|s)‍, as follows:

	﻿‍ Q′
t(a|s) = Qt(a|s) + P if at = at−1‍�

	﻿‍ Q′
t(a|s) = Qt(a|s) if at ̸= at−1‍�

In addition, the model of task B included counter-factual learning parameters ‍αC+‍ and ‍αC−‍, which 
added counter-factual updates based on the inverse outcome and affected the non-chosen action. 
For example, after receiving a positive outcome (‍r = 1‍) for choosing left (‍a‍), counter-factual updating 
would lead to an ‘imaginary’ negative outcome (‍̄r = 0‍) for choosing right (‍̄a‍).

	﻿‍ Qt+1(ā|s) = Qt(ā|s) + αC− (̄r − Qt(ā|s)) if rt = 0‍�

	﻿‍ Qt+1(ā|s) = Qt(ā|s) + αC+(̄r − Qt(ā|s)) if rt = 1‍�
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‍̄a‍ indicates the non-chosen action, and ‍̄r‍ indicates the inverse of the received outcome, ‍̄r = 1 − r‍. 
The best model fits were achieved with ‍αC+ = α+‍ and ‍αC− = α−‍, so counter-factual learning rates are 
not reported in this paper.

In tasks A and B, positive and negative learning rates are differentiated in the following way:

	﻿‍ Qt+1(a|s) = Qt(a|s) + α+(rt − Qt(a|s)) if rt = 1‍�

	﻿‍ Qt+1(a|s) = Qt(a|s) + α−(rt − Qt(a|s)) if rt = 0‍�

In the best model for task A, only ‍α+‍ was a free parameter, while ‍α−‍ was fixed to 0. In task C, ‍α−‍ 
was a function of ‍α+‍, such that ‍α− = b ∗ α+‍, where ‍b‍ is the neglect bias parameter that determines 
how much negative feedback is neglected compared to positive feedback. Throughout the paper, we 
report ‍α− = b ∗ α+‍ for task C.

In addition to an RL module, the model of task C included a working memory module with perfect 
recall of recent outcomes, but fast forgetting and strict capacity limitations. Perfect recall was modeled 
as an RL process with learning rate ‍αWM+ = 1‍ that operated on working-memory weights ‍W(a|s)‍ rather 
than action values. On trials with positive outcomes (‍r = 1‍), the model reduces to:

	﻿‍ Wt+1(a|s) = rt‍�

On trials with negative outcomes (‍r = 0‍), multiplying ‍αWM+ = 1‍ with the neglect bias ‍b‍ leads to 
potentially less-than perfect memory:

	﻿‍ Wt+1(a|s) = Wt(a|s) + b ∗ (rt − Wt(a|s))‍�

Working-memory weights ‍W(a|s)‍ were transformed into action policies ‍pWM(a|s)‍ in a similar way 
as RL weights ‍Q(a|s)‍ were transformed into action probabilities ‍pRL(a|s)‍, using a softmax transform 
combined with undirected noise:

	﻿‍
p(ai|s) = (1 − ϵ) ∗ exp(β Q(ai |s))∑

aj∈a exp(β Q(aj |s)) + ϵ ∗ 1
|a|

‍ �

‍|a| = 3‍ is the number of available actions and ‍
1
|a|‍ is the uniform policy over these actions; ‍ϵ‍ is the 

undirected noise parameter.
Forgetting was implemented as a decay in working-memory weights ‍W(a|s)‍ (but not RL Q-values):

	﻿‍ Wt+1(a|s)t+1 = (1 − f) ∗ Wt(a|s)t + f ∗ 1
3‍�

Capacity limitations on working memory were modeled as an adjustment in the weight ‍w‍ of 

‍pWM(a|s)‍ compared to ‍pRL(a|s)‍ in the final calculation of action probabilities ‍p(a|s)‍:

	﻿‍ w = ρ ∗ (min(1, K
ns ))‍�

	﻿‍ p(a|s) = w ∗ pWM(a|s) + (1 − w) ∗ pRL(a|s)‍�

The free parameter ‍ρ‍ is the probability of using values stored in working memory to choose an 
action (relative to RL), ‍ns‍ indicates a block’s stimulus set size, and ‍K ‍ captures individual differences in 
working memory capacity.

We fitted a separate RL model to each task, using state-of-the-art methods for model construction, 
fitting, and validation (Wilson and Collins, 2019; Palminteri et al., 2017). Models for tasks A and 
B were fitted using hierarchical Bayesian methods with Markov-Chain Monte-Carlo sampling, which 
is an improved method compared to maximum likelihood that leads to better parameter recovery, 
amongst other advantages (Gelman et  al., 2013; Katahira, 2016; Watanabe, 2013). The model 
for task C was fitted using classic non-hierarchical maximum-likelihood because model parameter 
‍K ‍ is discrete, which renders hierarchical sampling less tractable. In all cases, we verified that the 
model parameters were recoverable by the selected model-fitting procedure, and that the models 
were identifiable. Details of model-fitting procedures are provided in the original publications (Master 
et al., 2020; Eckstein et al., 2022; Xia et al., 2021).

For additional details on any of these models, as well as detailed model comparison and validation, 
the reader is referred to the original publications (task A: Xia et al., 2021; task B: Eckstein et al., 
2022; task C: Master et al., 2020).
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Principal component analysis (PCA)
The PCA in section Main axes of variation included 15 model parameters (‍α+‍ and noise/explo-
ration in each task; Forgetting and ‍α−‍ in two tasks; Persistence in task B; four working memory 
parameters in task C; see section 'Computational models') and 39 model-free features, including 
simple behavioral features (e.g. overall performance, reaction times, tendency to switch), results 
of behavioral regression models (e.g. effect of delay between presentations of the same stimulus 
on accuracy), and the model parameters of an alternative Bayesian inference model in task B. All 
behavioral features, including their development over age, are described in detail in Appendix 
6 and Appendix 3—figure 1B. For simplicity, section Main axes of variation focused on the first 
three PCs only; the weights, explained variance, and age trajectories of remaining PCs are shown 
in Appendix 8—figure 4.

PCA is a statistical tool that decomposes the variance of a dataset into so-called ‘principal compo-
nents’ (PCs; Abdi and Williams, 2010). PCs are linear combinations of a dataset’s original features 
(e.g. response times, accuracy, learning rates), and explain the same variance in the dataset as the 
original features. The advantage of PCs is that they are orthogonal to each other and therefore 
capture independent aspects of the data. In addition, subsequent PCs explain subsequently less vari-
ance, such that selecting just the top PCs of a dataset retains the bulk of the variance and the ability 
to reconstruct the dataset up to some ceiling determined by random noise. When using this approach, 
it is important to understand which concept each PC captures. So-called factor loadings, the original 
features’ weights on each PC, can provide this information.

PCA performs a change of basis: Instead of describing the dataset using the original features (in 
our case, 54 behaviors and model parameters), it creates new features, PCs, that are linear combina-
tions of the original features and capture the same variance, but are orthogonal to each other. PCs 
are created by eigendecomposition of the covariance matrix of the dataset: the eigenvector with the 
largest eigenvalue shows the direction in the dataset in which most variance occurs, and represents 
the first PC. Eigenvectors with subsequently smaller eigenvalues form subsequent PCs. PCA is related 
to Factor analysis, and results are very consistent between both methods in our dataset. PCA and 
FA are often used for dimensionality reduction. In this case, only a small number of PCs / Factors is 
retained, whereas the majority is discarded, in an effort to retain most variance with a reduced number 
of features.

We highlight the most central behavioral features here; more detail is provided in 'Appendix 1' and 
'Appendix 6'. Response to feedback was assessed using features ‘Win-stay’ (percentage of trials in 
which a rewarded choice was repeated), and ‘Lose-stay’ (percentage of trials in which a non-rewarded 
choice was repeated). For task B, we additionally included ‘Win-lose-stay’ tendencies, which is the 
proportion of trials in which participants stay after a winning trial that is followed by a losing trial. This 
is an important measure for this task because the optimal strategy required staying after single losses.

We also included behavioral persistence measures in all tasks. In tasks A and C, these included a 
measure of action repetition (percentage of trials in which the previous key was pressed again, irre-
spective of the stimulus and feedback) and choice repetition (percentage of trials in which the action 
was repeated that was previously selected for the same stimulus, irrespective of feedback). In task B, 
both measures were identical because every trial presents the same stimulus.

We further included task-specific measures of performance. In task A, these were: the average 
accuracy for the first three presentations of each stimulus, reflecting early learning speed; and the 
asymptote, intercept, and slope of the learning progress in a regression model predicting perfor-
mance (for details about these measures, see Xia et  al., 2021). In task B, task-specific measures 
of performance included the number of reversals (because reversals were performance-based); and 
the average number of trials to reach criterion after a switch. In tasks A and C, we also included a 
model-independent measure of forgetting. In task A, this was the effect of delay on performance 
in the regression model mentioned above. In task C, this was the effect of delay in a similar regres-
sion model, which also included set size, the number of previous correct choices, and the number 
of previous incorrect choices, whose effects were also included. Lastly for task C, we included the 
slope of accuracy and response times over set sizes, as measures of the effect of set size on perfor-
mance. For task B, we also included the difference between early (first third of trials) and late (last 
third) performance as a measure of learning. To avoid biases in the PCA toward any specific task, 
we included equal numbers of behavioral features for each task. Before performing the PCA, we 
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individually standardized each feature, such that each feature was centered with a mean of 0 and a 
standard deviation of 1.

To facilitate the interpretation of PC2 and PC3, we normalized the loadings (PCA weights) of each 
feature (behavioral and model parameter) with respect to PC1, flipping the loadings of all features in 
PC2 and PC3 that loaded negatively on PC1. This step ensured that the directions of factor loadings 
on PC2 and PC3 were interpretable in the same way for all features, irrespective of their role for task 
performance, and revealed the encoding of task contrasts.

Ridge regression
In sections Parameters and cognitive processes and parameters and behavior, we use regularized, 
cross-validated Ridge regression to determine whether parameters captured overlapping variance, 
which would point to an overlap in cognitive processes. We used Ridge regression to avoid problems 
that would be caused by overfitting when using regular regression models. Ridge regression regular-
izes regression weight parameters ‍w‍ based on their L2-norm. Regular regression identifies a vector of 

regression weights ‍w‍ that minimize the linear least squares ‍||y − wX||22‍. Here, 
‍
||a||22 =

√∑
ai∈x a2

i ‍
 is the 

L2-norm of a vector ‍a‍, vector ‍y‍ represents the outcome variable (in our case, a vector of parameters, 
one fitted to each participant), matrix ‍X ‍ represents the predictor variables (in our case, either several 
behavioral features for each participant [section 'Parameters and cognitive processes'], or several 
parameters fitted to each participant [section 'Parameters and behavior']), and vector ‍w‍ represents 
the weights assigned to each feature in ‍X ‍ (in our case, the weight assigned to each predicting behav-
ioral pattern or each predicting parameter).

When datasets are small compared to the number of predictors in a regression model, exploding 
regression weights ‍w‍ can lead to overfitting. Ridge regression avoids this issue by not only mini-
mizing the linear least squares like regular regression, but also the L2 norm of weights ‍w‍, that is, by 
minimizing ‍||y − wX||22 + α ∗ ||w||22‍. Parameter ‍α‍ is a hyper-parameter of Ridge regression, which needs 
to be chosen by the experimenter. To avoid bias in the selection of ‍α‍, we employed repeated cross-
validated grid search. At each iteration of this procedure, we split the dataset into a predetermined 
number ‍s ∈‍ [2, 3, …, 8] of equal-sized folds, and then fitted a Ridge regression to each fold, using 
values of ‍α ∈‍ [0, 10, 30, 50, 100, 300, …, 10,000, 100,000, 1,000,000]. For each ‍s‍, we determined the 
best value of ‍α‍ based on cross-validation between folds, using the amount of explained variance, ‍R2‍, 
as the selection criterion. To avoid biases based on the random assignment of participants into folds, 
we repeated this procedure ‍n = 100‍ times for each value of ‍α‍. To avoid biases due to the number of 
folds, the entire process was repeated for each ‍s‍, and the final value of ‍s‍ was selected based on ‍R2‍. 
We used the python package ‘scikit learn’ (Pedregosa et al., 2011) to implement the procedure.

We conducted three models per parameter to determine the relations between parameters: 
predicting each parameter from all the parameters of each of the other two tasks (2 models); and 
predicting each parameter from all parameters of both other tasks combined (1 model; Figure 4A). 
We conducted the same three models per parameter to determine the relations between parameters 
and behaviors, predicting each parameter from behavioral features of the other tasks (Figure 4A). In 
addition, we conducted a fourth model for behaviors, predicting each parameter from the behaviors 
of all three tasks combined, to assess the contributions of all behaviors to each parameter (Figure 4C). 
Meta-parameters ‍s‍ and ‍α‍ were allowed to differ (and differed) between models. The final values of ‍R2‍ 
(Figure 4B and D) and the final regression weights ‍w‍ (Figure 4A and C; Table 6) were determined by 
refitting the winning model.

Data Availability
The data collected for this study are openly available at osf.io/h4qr6/. The analysis code is available at 
https://github.com/MariaEckstein/SLCN/blob/master/models/MetaSLCN-01ReadInData.ipynb. (copy 
archived at swh:1:rev:4fb5955c1142fcbd8ec80d7fccdf6b35dbfd1616, Eckstein, 2022).
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Appendix 1

Behavioral measures
In addition to RL model parameters, we also extracted behavioral features from each of the three 
tasks, conducted regression analyses, and in one case fitted a non-RL computational model. The 
resulting features of these analyses were used in the PCA (sections Main axes of variation and 
principal component analysis (PCA); Figure 3; Appendix 8—figure 4), behavioral Ridge regression 
(sections Parameters and behavior and ridge regression), and comprehensive correlation matrix 
(Appendix  8—figure 3). The following list details these features, using the labels in Figure  3, 
Appendix 8—figure 4, and Appendix 8—figure 3 to denote each feature:

•	 Basic performance measures
○○ ‘Missed trials’ (percentage of missed trials)
○○ ‘Response times’ (average response times on correct trials)
○○ ‘Response time variability’ (standard deviation of response times on correct trials)
○○ ‘Percent correct’ (accuracy; overall percentage of correct trials)

•	 Advanced performance measures
○○ ‘Acc. first 3 trials’ (only for task A; average accuracy on the first three trials of each stimulus; 

a measure of initial learning)
○○ ‘Asymptotic acc.’ (only for task A; an exponential curve was fit to the learning curve of 

each subject. The functional form was: ‍0.5 + a − a ∗ exp(−c ∗ (t − 1))‍, where ‍t‍ is trial 
number. ‍a‍ is bounded ‍0 < 0.5‍, and ‍c > 0‍. This feature refers to the asymptote of the curve: 
‍0.5 + a − a ∗ exp(−c ∗ (T − 1))‍, where ‍T ‍ is total number of trials completed by the subject)

○○ ‘Learning slope’ (only for task A; this feature refers to the slope ‍log(c)‍ of the model above)
○○ ‘Acc. intercept’ (only for task A; hierarchical regression was fit to predict 

the probability of a correct choice on each trial. The regression formula was 
‍p(correct) 1 + prew + delay + (1 + prew + delay|id)‍, where ‍(...|id)‍ indicates random effects by 
subject id. This feature refers to the random intercept for each subject)

○○ ‘Reward effect on acc.’ (in the same regression model, this feature refers to the random 
slope for the reward history predictor, which is the z-scored number of correct trials for 
each butterfly)

○○ ‘Delay’ (only tasks A and C; in the same [or an equivalent] regression model, this feature 
refers to the random slope for the delay predictor, which is the z-scored number of trials 
since last time the same stimulus was seen and the participant chose the correct action)

○○ ‘Number of switches’ (only for task B; the number of task switches experienced by each 
participant; because the occurrence of switches was based on performance, the number of 
switches is an additional criterion of task performance)

○○ ‘Criterion after switch’ (only for task B; number of trials after a task switch until participants 
reached a performance criterion of 2 correct choices after the task switch)

○○ ‘Acc. late minus early’ (only for task B; difference in accuracy between the first and last third 
of trials in the task, as a measure of ‘slow’ learning)

•	 Action repetition
○○ ‘Stay (choice)’ (for tasks A and C; percentage of choices that were repeated with respect to 

each stimulus, averaged across stimuli)
○○ ‘Stay (motor)’ (for tasks A and C; percentage of choices that were repeated between two 

subsequent trials, irrespective of the shown stimulus)
○○ ‘Stay (both)’ (for task B; because the task only provided a single stimulus, stay-choice and 

stay-motor were identical)
○○ ‘Win-stay’ (Fraction of trials in which participants repeated a choice for a given stimulus that 

was rewarded on the previous trial for that stimulus, normalized by number of win trials, 
and averaged over stimuli: ‍

win stay
win stay+win shift‍)

○○ ‘Win-lose-stay’ (for task B only; fraction of trials in which participants repeated a choice 
that was rewarded two trials back, but not rewarded on the previous trial, normalized by 
number of win-lose trials)

○○ ‘Lose-stay’ (Fraction of trials in which participants repeated a choice for a given stimulus 
that was not rewarded on the previous trial for that stimulus, normalized by number of lose 
trials, and averaged over stimuli: ‍

lose stay
lose stay+lose shift‍)

•	 Bayesian model parameters (task B only)
○○ ‘‍p(switch)‍ param.’ (a Bayesian inference model was fit in addition to the RL model. The 

Bayesian model employed a mental model of the task, which was based on two hidden 

https://doi.org/10.7554/eLife.75474
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states ‘Left is correct’ and ‘Right is correct’, and used Bayesian inference to infer the current 
hidden state based on recent outcomes. The free parameters of this model were the task 
parameters of the mental model, switch probability on each trial ‍pswitch‍, and probability of 
reward for a correct choice ‍preward‍, choice parameters Persistence ‍P‍ and inverse decision 
temperature ‍β‍. Detailed information about this model is provided in Eckstein et al., 2022. 
This feature refers to model parameter ‍pswitch‍.)

○○ ‘‍p(reward)‍ param.’ (parameter ‍p(switch)‍ in the Bayesian model)
•	 Behavioral measures of working memory (task C only)

○○ ‘Set size effect on acc.’ (a logistic regression was fitted to choice data, assessing the effects 
of set size, delay, number of previous correct trials, and number of previous incorrect trials 
on choice accuracy; this feature refers to the effect of set size)

○○ ‘Feature ‍p(cor)‍’ (this features refers to the effect of the number of previous correct trials)
○○ ‘Feature ‍p(inc)‍’ (this features refers to the effect of the number of previous incorrect trials)
○○ ‘Set size Acc. slope’ (performance was averaged for blocks of each set size, and the slope 

in performance over set sizes was determined)
○○ ‘Set size Acc. slope’ (similar to the previous feature, but replacing performance with 

response times) 

https://doi.org/10.7554/eLife.75474
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Appendix 2
Task descriptions in the Markov decision process (MDP) framework
In order to enhance theoretical consistency between RL studies in the psychological literature, one 
step is the use of a common framework to describe and design laboratory tasks. One such framework 
is the MDP. Table Appendix 2—table 1 shows our three tasks in terms of this frameworks, and 
complements Figure 1E.

Appendix 2—table 1. Task descriptions in the Markov decision process framework.
POMDP: Partially-observable Markov Decision Process. ‘Pos. stochastic’: positive outcomes are 
delivered stochastically. ‘Neg. deterministic’: negative outcomes are delivered deterministically.

Number of States Number of Actions Reward function

Task A 4 (1 per trial) 2 (visible on screen) Stable, stochastic

Task B Stateless / POMDP 2 (visible on screen) Volatile, pos. stochastic, neg. deterministic

Task C 2/3/4/5 (1 per trial) 3 (not visible) Stable, deterministic

https://doi.org/10.7554/eLife.75474
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Appendix 3—figure 1. Main results of tasks A, B, and C. (A) Top: In task A, performance increased with age and 
plateaued in early adulthood, as captured in decreases in decision temperature ‍

1
β ‍ and increases in learning rate 

‍α‍ (Xia et al., 2021). Performance also increased over task time (blocks). Middle: In task B, performance showed 
a remarkable inverse U-shaped age trajectory: Performance increased markedly from early childhood (8–10 years) 
to mid-adolescence (13-15), but decreased in late adolescence (15-17) and adulthood (18-30) (Rosenbaum et al., 
2020). Bottom: Task C showed that the effect of set size on performance (regression coefficient) decreased with 
age, which was captured by increases in RL learning rate, but stable WM limitations (Master et al., 2020). (B) Main 
behavioral features over age; colors denote task; all features are z-scored. Some measures (e.g. response times 
[RT], win-stay choices) were consistent across tasks, while others (e.g. accuracy [Acc.], lose-stay choices) showed 
significant differences (see Table Appendix 6—table 1).

Each task was first analyzed independently, and detailed results have been presented elsewhere 
(Master et  al., 2020; Eckstein et  al., 2022; Xia et  al., 2021). We summarize the key results 
here. In task A, participants saw one of four butterflies on each trial, and aimed to pick the one 
of two flowers that was preferred by this butterfly. Each butterfly had a stable preference for one 
flower, and participants received a stochastic reward (80% probability) when they chose this flower. 
Nevertheless, sometimes the butterfly liked the opposite flower, and participants got a reward with 
20% when they chose the opposite flower (Figure 1B; section Testing procedure). Task A has been 
used previously to investigate the role of reward sensitivity and its interplay with episodic memory, 
shedding light on the neural substrate of these processes, notably the striatum and hippocampus, 
and revealing a unique role of adolescence in stochastic learning (Davidow et al., 2016). In our 
sample, performance on task A increased with age through the early-twenties and then stabilized 
(Xia et al., 2021; Appendix 3—figure 1A). Using hierarchical Bayesian methods to fit RL models, 
we showed that this performance increase was driven by increasing positive learning rate ‍α+‍ and 
decreasing decision noise ‍

1
β ‍. Forgetting rates decreased very slightly with age, and negative learning 

rate ‍α−‍ was 0, suggesting that participants ignored negative outcomes (Figure 2A and C).
In task B, participants saw two boxes and selected one on each trial, with the goal of collecting gold 

coins. For some period of time, one box was correct and led to a stochastic reward (75% probability), 
while the other was unrewarded (0% probability). Then, the contingencies switched unpredictably 
and unsignaled, and the opposite box became the correct one. A 120-trials session contained 2–7 
switches (Figure 1C; section Testing procedure). Task B was adapted from the rodent literature, 

https://doi.org/10.7554/eLife.75474
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where it has been used to show a causal link between stimulation of striatal spiny projection neurons 
and subsequent choices (Tai et al., 2012). Stochastic reversal tasks are also common in the human 
literature (Peterson et al., 2009; Swainson et al., 2000; van der Schaaf et al., 2011; Waltz and 
Gold, 2007; Dickstein et al., 2010; Cools et al., 2002; Cools et al., 2009; Lourenco and Casey, 
2013; Izquierdo et al., 2017). A notable feature of our task compared to others is the deterministic 
feedback for incorrect choices. In our study, we found that human youth age 13–15 years markedly 
outperformed younger youth (8-12), older youth (16-17), and even young adults (18-30), suggesting 
that adolescent brains might be specifically adapted to perform well in the stochastic and volatile 
environment of task B. Computational modeling, using hierarchical Bayesian fitting, revealed that 
some model parameters (e.g. decision temperature ‍

1
β ‍, Persistence) increased monotonically from 

childhood to adulthood, whereas others (e.g. learning rate for negative feedback ‍α−‍, Bayesian 
inference parameters ‍pswitch‍ and ‍preward‍) showed pronounced U-shapes with peaks in 13-to-15-year-
olds, similar to performance. Blending RL and a Bayesian inference models using PCA revealed 
that adolescents operated at a sweet spot that combined mature levels of task performance with 
child-like, short time scales of learning, and provided an explanation for adolescents’ superior 
performance (Eckstein et al., 2022).

Task C was designed to dissociate the effects of RL and working memory, and has been used in 
diverse samples of adult participants (Collins and Frank, 2012; Collins et al., 2017b; Heinz et al., 
2017; Collins et al., 2017a; Collins and Frank, 2018; Collins, 2018; van den Bos et al., 2012), 
but this study was the first to test it in a developmental samples (Master et al., 2020). In this task, 
participants saw one stimulus at a time (e.g. bee) and chose one of three actions in response (left, 
up, right; Figure 1D, right). Feedback was deterministic, that is, reliably identified each action as 
correct or incorrect. The goal of task C was to learn the correct response for each stimulus. The key 
feature of the task is that stimuli appear in independent blocks of different sizes, ranging from 2 to 
5 stimuli (e.g. the bee could be presented in a block containing just 1 other animal, or up to 4 other 
animals). As set sizes increase, participants have been shown to shift the balance between using 
their capacity-limited, but reliable working memory system, to using their unlimited, but slower RL 
system (Collins and Frank, 2012). Task C estimates both memory systems, RL as well as working 
memory. We found that participants aged 8–12 learned slower than participants aged 13–17, and 
were more sensitive to set size (Appendix 3—figure 1A). Computational modeling revealed that 
developmental changes in RL were more protracted than changes in working memory: RL learning 
rate ‍α+‍ increased until age 18, whereas WM parameters showed weaker and more subtle changes 
early in adolescence (Master et al., 2020).

https://doi.org/10.7554/eLife.75474
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Appendix 4
Computational model validation
This section provides more information on the set of computational models compared in each task 
and validates the claim that the models employed in the current study are the best-fitting models, 
and provide comparably good fit to each respective task.

Appendix 4—figure 1 shows human and simulated model behavior side-by-side for each of the 
three tasks. Specifically, the figure shows the human behavior we observed in the current study, as 
well as the simulated behavior of the winning model of each task for artificial agents, each of which 
used the fitted parameters of a particular human participant. The fact that in each case, human 
behavior is approximated closely by model simulations validates the claim that the models we 
have chosen as the winning models explain human behavior adequately, and other models are not 
expected to perform qualitatively better.

To arrive at this conclusion, several competing models were compared in each study: In task 
A, the following six models were compared: Classic RL (‍α,β‍); RL with asymmetric learning rates 
(‍α+,α−,β‍); Asymmetric RL with ‍α− = 0‍ (‍α+, 0,β‍); RL with forgetting (‍α,β f ‍), Asymmetric RL with 
forgetting (‍α+,α−,β, f ‍); and Asymmetric RL with ‍α− = 0‍ and forgetting (‍α+, 0,β, f ‍).

In task B, final comparison involved seven models with increasing complexity (the order of adding 
free parameters was determined in pre-analyses): Classic RL (‍α,β‍); RL with counterfactual updating 
(‍α,β‍, counterfactual ‍α‍); RL with counterfactual updating and perseverance (‍α,β‍, counterfactual ‍α‍, 
perseverance); RL with perseverance, separate learning from positive versus negative outcomes, and 
counterfactual updating for positive outcomes (‍α+,β‍, counterfactual ‍α+‍, perseverance, ‍α−‍); RL with 
perseverance, separate learning from positive versus negative outcomes, and counterfactual updating 
for positive and negative outcomes (‍α+,β‍, counterfactual ‍α+‍, perseverance, ‍α−‍, counterfactual ‍α−‍); 
winning, simplified 4-parameter RL model with perseverance and separate learning rates for positive 
versus negative outcomes, which are identical to the respective counterfactual updating rates (‍α+‍ = 
counterfactual ‍α+‍, ‍α−‍ = counterfactual ‍α−‍, ‍β‍, perseverance).

In task C, model comparison involved six competing models: Classic RL (‍α,β‍), RL with undirected 
noise, RL with positive learning bias, RL with forgetting, RL with 4 learning rates, and the winning RL 
model with working memory (”RLWM”).

https://doi.org/10.7554/eLife.75474
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Appendix 4—figure 1. Behavioral validation of the winning model for each task. (A) Task A. The left figure shows 
performance (y-axis; probability of correct choice) over time on the task (x-axis; trial number). The right figure 
shows the average performance for each age group (in years). Red indicates human data, and blue indicates 
simulations from the winning model, based on best-fitting parameters. The close match between the red and blue 
datapoints indicates good model fit. (A) is reproduced from Figure 2 from Xia et al., 2021. (B) Task B. The top 
figure shows performance (y-axis; percentage of correct choices) aligned to switch trials (x-axis; i.e., trial on which 
the correct box switches sides), separately for male and female participants. The bottom figure shows another 
behavioral measures, the probability of repeating the same choice (y-axis; ‘% stay’) based on the previous outcome 
history (x-axis; ‘+ +’: two rewards in a row; ‘- +’: no reward followed by reward; etc.), separately for male and female 
participants. Colors indicate participant age. The columnwise panels compare human behavior (left) to simulated 
behavior of the winning RL model (right). The close correspondence between human and simulated model 
behavior indicates good model fit. (B) is reproduced from Figure 4 from Eckstein et al., 2022. (C) Task C. Each 
figure shows human performance (y-axis; percentage of correct trials) over time (x-axis; number of trials for each 
stimulus), with colors differentiating age groups. The two rows show blocks of different set sizes (top: set size of 
two stimuli per block; bottom: set size of five). The left two figures show human behavior, the right two show model 
simulations. (C) is reproduced from Figure 3C from Master et al., 2020.

© 2022, Eckstein et al.. Appendix 4- Figure 1B is reproduced from Figure 4 from Eckstein et al., 2022. The 
image is published under the terms of the CC BY-NC-ND 4.0 license.

© 2020, Master et al.. Appendix 4 - Figure 1C is reproduced from Figure 3C from Master et al., 2020. The image 
is published under the terms of the CC BY-NC-ND 4.0 license.
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Appendix 5
Comparison of human parameter generalization to ceiling
Section Statistical comparison to generalizability ceiling describes the results of our analysis 
comparing humans to simulated agents with perfect generalization. This section provides additional 
methodological detail.

We each to create an agent population that was maximally similar to the human population, in 
order to obtain a ceiling of generalizability that was as realistic as possible for the current study. To 
this aim, we created simulated agents in the following way: We first obtained age trajectories for 
each parameter (‍α+‍, ‍α−‍, ‍ϵ‍ / ‍

1
β ‍, forget) by averaging human z-scored parameter values across tasks 

(e.g. for ‍α−‍, averaging z-scored values of ‍α−‍ across tasks B and C). We then obtained task-specific 
parameter values by ‘un-z-scoring’ these age trajectories: ‍paramtask = paramz ∗ stdevtask + meantask‍. 
This operation projects the shared parameter age trajectory of a parameter into the appropriate 
scale for each task. We chose this approach instead of averaging raw parameter values across tasks 
because the scale of each parameter differed so much between tasks (Figure 2A) that simulated 
behavior would hardly be interpretable outside this range.

For analyses, the same exact methods were used as for humans when fitting parameters (section 
Computational models), visualizing age trajectories (Fig. Appendix 5—figure 1A and Appendix 5—
figure 1B), and performing statistical tests (ANOVA: Appendix  5—table 1; regression models: 
Tables Appendix 5—table 2, Appendix 5—table 3, and Appendix 5—table 4).

To statistically compare human results to the ceiling obtained from the simulated sample, we 
performed a bootstrapped correlation analysis: We first calculated the raw Spearman correlation 
scores between each pair of tasks for each parameter (e.g. ‍α+‍ task A ‍↔‍ task B; ‍α+‍ task A ‍↔‍ task C; 
‍α+‍ task B ‍↔‍ task C), for both the human and simulated sample (dots in Fig. Appendix 5—figure 1C). 
We then calculated 95% confidence intervals for each correlation coefficient using bootstrapping, 
using the ‘BCa’ (reverse of the bias-corrected and accelerated bootstrap confidence interval) method 
of python’s scipy package, with 1000 bootstrap samples per correlation coefficient. To determine 
whether there was a significant difference between humans and simulations, we determined whether 
the human correlation coefficient was within the 95% confidence interval of the simulated sample. 
This corresponds to a two-sided rejection criterion of ‍p = 0.05‍.

https://doi.org/10.7554/eLife.75474


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Eckstein et al. eLife 2022;11:e75474. DOI: https://​doi.​org/​10.​7554/​eLife.​75474 � 43 of 52

Task A
Task B
Task C

N
oi

se
 ε

 / 
ex

pl
. 1

/β
Fo

rg
et

tin
g

Le
ar

ni
ng

 α
+

Le
ar

ni
ng

 α
-

N
oi

se
 ε

 / 
ex

pl
. 1

/β
Fo

rg
et

tin
g

Le
ar

ni
ng

 α
+

Le
ar

ni
ng

 α
-

8-
10

10
-1

3
13

-1
5

15
-1

7
18

-2
4

25
-3

0

8-
10

10
-1

3
13

-1
5

15
-1

7
18

-2
4

25
-3

0

8-
10

10
-1

3
13

-1
5

15
-1

7
18

-2
4

25
-3

0

8-
10

10
-1

3
13

-1
5

15
-1

7
18

-2
4

25
-3

0

Learning α+ Noise ε / expl. 1/β Forgetting Learning α-

Simulations
Humans

Sp
ea

rm
an

’s
 r

A-B A-C B-C A-B A-C B-C A-B A-C B-C A-B A-C B-C

* * * * * *

C

A B

Appendix 5—figure 1. Comparison of human parameter correlations to generalization ceiling. (A–B) Same 
as Figure 2A and B, but for simulated agents with perfect generalization, rather than humans. (C) Parameter 
correlations (dots) for each pair of tasks (x-axis), with bootstrapped 95% confidence intervals (error bars). Stars 
indicate significance at the level of ‍p = 0.05‍, that is, the human correlation coefficient is not contained within the 
confidence interval of the corresponding simulated correlation coefficient.

Appendix 5—table 1. Same as Table 1, but for simulated agents with perfect generalization, rather 
than humans.

Parameter Model Tasks F / t df ‍p‍ sig.

‍
1
β ‍ ANOVA A, B 2629 1 ‍p < 0.001‍ ***

t-test A vs B 49 246 ‍p < 0.001‍ ***

‍α+‍ ANOVA A, B, C 3753 2 ‍p < 0.001‍ ***

t-test A vs B 189 246 ‍p < 0.001‍ ***

t-test A vs C 13 246 ‍p < 0.001‍ ***

t-test B vs C 67 246 ‍p < 0.001‍ ***

‍α−‍ ANOVA B, C 6608 1 ‍p < 0.001‍ ***

t-test B vs C 81 246 ‍p < 0.001‍ ***

Appendix 5—table 1 Continued on next page
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Parameter Model Tasks F / t df ‍p‍ sig.

Forgetting ANOVA A, C 185 1 ‍p < 0.001‍ ***

t-test A vs C 14 246 ‍p < 0.001‍ ***

Appendix 5—table 2. Same as Table 2, but for simulated agents with perfect generalization, rather 
than humans.

Parameter AIC without task AIC with task F(df) p sig.

‍
1
β /ϵ‍ 1,938 1,937 NA NA –

‍α+‍ 1,992 1,996 NA NA –

‍α−‍ 1,350 1,355 NA NA –

Forgetting 1,345 1,344 ‍F(2, 245) = 4.42‍ ‍p = 0.013‍ *

Appendix 5—table 3. Same as Table 3, but for simulated agents with perfect generalization, rather 
than humans.

Parameter Tasks Predictor ‍β‍ ‍p‍(Bonf.) sig.

‍
1
β /ϵ‍ A, B, C Intercept 2.55 ‍< 0.001‍ ***

Age (linear) –0.25 ‍< 0.001‍ ***

Age (quadratic) 0.005 ‍< 0.001‍ ***

‍α+‍ A, B, C Intercept –2.27 ‍< 0.001‍ ***

Age (linear) 0.22 ‍< 0.001‍ ***

Age (quadratic) –0.004 ‍< 0.001‍ ***

‍α−‍ A, B, C Intercept –1.03 0.055

Age (linear) 0.06 0.12

Age (quadratic) –0.002 0.25

Forgetting A, C Intercept 0.57 0.29

Age (linear) –0.045 0.47

Age (quadratic) 0.001 0.70

Appendix 5—table 4. Same as Table 4, but for simulated agents with perfect generalization, rather 
than humans.

Parameter Tasks ‍β‍ p sig.

‍
1
β ‍, ‍ϵ‍ A & B 3.04 ‍< 0.001‍ ***

A & C 0.72 ‍< 0.001‍ ***

B & C 0.44 ‍< 0.001‍ ***

‍α+‍ A & B 0.34 0.002 **

A & C 0.01 ‍< 0.001‍ ***

B & C 0.008 0.009 **

‍α−‍ B & C 0.018 ‍< 0.001‍ ***

Forgetting A & C 0.023 ‍< 0.001‍ ***

Appendix 5—table 1 Continued
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Appendix 6
Age trajectories of behavioral measures
This section provides additional information about selected behavioral features (Appendix 1) and 
assesses their development with age. For statistical testing, we assessed age trajectories using 
similar regression models as before (section Parameter age trajectories).

Response times, reflecting choice fluidity and task engagement, sped up with age in all tasks, 
whereby age trajectories differed significantly between tasks A and B in pairwise follow-up models 
(grand model ‍AICwith task = 1.868‍, ‍AICno task = 1.871‍; for detailed statistics, see Table Appendix 6—
table 1; Appendix  3—figure 1B). Accuracy, reflecting subjective ease and task engagement, 
showed a significant increase with age, and no significant pairwise differences in age trajectories 
after correcting for multiple comparisons, despite the better fit of the model including task compared 
to the model without task (‍AICwith task = 2.015‍, ‍AICno task = 2.024‍; Appendix  3—figure 1B; Table 
Appendix 6—table 1).

Appendix 6—table 1. Statistics of mixed-effects regression models predicting z-scored behavioral 
features from task (task A, task B, task C), age, and squared age (months).
The task-less grand model is reported when it had the best model fit (win-stay, Delay). Otherwise, 
pairwise follow-up models are shown (RT, ACC, lose-stay), with p-values corrected for multiple 
comparison using the Bonferroni correction. * ‍p < .05‍; ** ‍p < .01‍, *** ‍p < .001‍.

Parameter Tasks Predictor ‍β‍ ‍p‍(Bonf.) sig.

RT task B & task A Task (main effect) 2.15 0.006 **

Linear age –0.23 0.003 **

Task * linear age (interaction) –0.25 0.003 **

Task * quadratic age (interaction) 0.007 0.003 **

task B & task C Task (main effect) –0.76 0.69

Linear age –0.48 ‍< 0.001‍ ***

Task * linear age (interaction) 0.10 0.45

Task * quadratic age (interaction) –0.003 0.288

task A & task C Task (main effect) 1.40 0.63

Linear age –0.23 0.003 **

Task * linear age (interaction) –0.15 0.084

Task * quadratic age (interaction) 0.004 0.129

ACC task B & task A Task (main effect) 1.27 0.36

Linear age 0.27 ‍< 0.001‍ ***

Task * linear age (interaction) –0.10 0.87

Task * quadratic age (interaction) 0.001 1

task B & task C Task (main effect) –2.15 0.033 *

Linear age 0.17 0.036 *

Task * linear age (interaction) 0.20 0.118

Task * quadratic age (interaction) –0.004 0.33

task A & task C Task (main effect) –0.88 0.60

Linear age 0.27 ‍< 0.001‍ ***

Task * linear age (interaction) 0.10 0.57

Task * quadratic age (interaction) –0.003 0.57

Appendix 6—table 1 Continued on next page
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Parameter Tasks Predictor ‍β‍ ‍p‍(Bonf.) sig.

WS —– Intercept –3.05 ‍< 0.001‍ ***

Age (linear) 0.31 ‍< 0.001‍ ***

Age (quadratic) –0.007 ‍< 0.001‍ ***

LS task B & task A Task (main effect) –0.90 0.42

Linear age 0.075 0.87

Task * linear age (interaction) 0.12 0.42

Task * quadratic age (interaction) –0.004 0.29

task B & task C Task (main effect) 4.84 ‍< 0.001‍ ***

Linear age 0.20 0.015 *

Task * linear age (interaction) –0.51 ‍< 0.001‍ ***

Task * quadratic age (interaction) 0.012 ‍< 0.001‍ ***

task A & task C Task (main effect) 3.94 ‍< 0.001‍ ***

Linear age 0.075 0.54

Task * linear age (interaction) –0.39 ‍< 0.001‍ ***

Task * quadratic age (interaction) 0.008 0.003 **

Delay —– Intercept 0.95 0.035 *

Age (linear) –0.09 0.07

Age (quadratic) 0.002 0.14

Win-stay (WS) behavior reflects participants’ tendency to repeat rewarded actions, while lose-
stay (LS) behavior reflects participants’ tendency to repeat non-rewarded actions. Win-stay behavior 
increased with age, without task differences (‍AICwith task = 1.961‍, ‍AICno task = 1.959‍; Appendix 3—
figure 1B; Table Appendix  6—table 1). Lose-stay behavior showed marked task differences 
(‍AICwith task = 2.075‍, ‍AICno task = 2.109‍), with inverse trajectories in task C compared to the other 
tasks: In task C, lose-stay behavior decreased monotonically until mid-adolescence (linear effect 
of age: ‍w = −0.31‍, ‍p < 0.001‍; quadratic effect: ‍w = 0.007‍, ‍p < 0.001‍), whereas in task A, it increased 
slightly (linear effect of age: ‍w = 0.075‍, ‍p < 0.001‍; quadratic effect: ‍w = −0.001‍, ‍p < 0.001‍). In task 
B, lose-stay behavior showed an inverse-U trajectory (linear effect: ‍w = 0.20‍, ‍p < 0.001‍; quadratic: 
‍w = −0.005‍, ‍p < 0.001‍; Appendix 3—figure 1B). These differences mirrored differences in optimal 
task strategies: Lose-stay is always a bad strategy in task C because negative feedback is diagnostic 
and actions with negative outcomes should never be repeated. In tasks A and B, on the other 
hand, some proportion of lose-stay choices is necessary because individual negative feedback is not 
diagnostic, and several pieces of evidence need to be integrated over time.

Lastly, the Delay pattern measured the decrease in accuracy with increasing delay between two 
presentations of the same stimulus (Appendix 1). Delay did not show significant age changes (Table 
Appendix 6—table 1), and did not differ between tasks (‍AICwith task = 1.405‍, ‍AICno task = 1.402‍).

Appendix 6—table 1 Continued
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Appendix 7

Limitations of this research
Within-task parameter correlations
One limitation of our results is that regression analyses might be contaminated by parameter 
cross-correlations (sections Relative parameter differences, Parameter age trajectories, Predicting 
age trajectories), which would reflect modeling limitations (non-orthogonal parameters), and not 
necessarily shared cognitive processes. Concretely, parameters could be correlated between tasks 
for two reasons: (1) Because parameters are generalizable and consistent (which would be a great 
outcome). (2) However, a parameter like learning rate could also be correlated between two tasks 
because exploration parameters are correlated (e.g. due to generalization), simply because learning 
rates are negatively correlated with exploration parameters (which actually is the case in our study, 
as shown in Appendix 8—figure 2). So the ‘actual’ correlation of exploration parameters between 
tasks would lead to a ‘spurious’ correlation of learning rate parameters between tasks, just because 
exploration and learning rates are correlated within tasks. In other words, the significant correlation 
in Appendix 8—figure 2 could indicate an ‘actual’ or a ‘spurious’ correlation, and we cannot know 
with certainty which one we are observing. However, this issue likely applies to most—if not all—
computational modeling studies, and we hope that future research will provide more clarity on the 
issue. In other words, parameters ‍α‍ and ‍β‍ are mathematically related in the regular RL modeling 
framework (Sutton and Barto, 2017; Daw, 2011), and we observed significant within-task correlations 
between these parameters for two of our three tasks (Appendix 8—figure 2, Appendix 8—figure 
3). This indicates that caution is required when interpreting correlation results. However, correlations 
were also present between tasks (Appendix 8—figure 1, Appendix 8—figure 3), suggesting that 
within-model trade-offs were not the only explanation for shared variance, and that shared cognitive 
processes likely also played a role.

Another issue might arise if such parameter cross-correlations differ between models, due to 
the differences in model parameterizations across tasks. For example, memory-related parameters 
(e.g. ‍F‍, ‍K ‍ in models A and C) might interact with learning- and choice-related parameters (e.g. ‍α+‍, 

‍α−‍, noise/exploration), but such an interaction is missing in models that do not contain memory-
related parameters (e.g. task B). If this indeed the case, that is, parameters trade off with each 
other in different ways across tasks, then a lack of correlation between tasks might not reflect a 
lack of generalization, but just the differences in model parameterizations. Appendix 8—figure 2 
indeed shows significant, medium-sized, positive and negative correlations between several pairs 
of Forgetting, memory-related, learning-related, and exploration parameters (though with relatively 
small effect sizes; Spearman correlation: ‍0.17 < |r| < 0.22‍).

The existence of these correlations (and differences in correlations between tasks) suggest 
that memory parameters likely traded off with each other, as well as with other parameters, which 
potentially affected generalizability across tasks. However, some of the observed correlations might 
be due to shared causes, such as a common reliance on age, and the regression analyses in the main 
paper control for these additional sources of variance, and might provide a cleaner picture of how 
much variance is actually shared between parameters.

Furthermore, correlations between parameters within models are frequent in the existing literature, 
and do not prevent researchers from interpreting parameters—in this sense, the existence of similar 
correlations in our study allows us to address the question of generalizability and interpretability in 
similar circumstances as in the existing literature. And lastly, we confirmed that our method is able to 
detect generalizability using the simulation approach described in section Statistical Comparison to 
Generalizability Ceiling. In other words, even though within-task parameter cross-correlations likely 
induced some noise, the sensitivity with which we are still able to detect generalization was enough 
to show successful generalization in the simulated sample (and a significant reduction in humans).

Test-retest reliability
Furthermore, parameter generalizability is naturally bounded by parameter reliability, that is, the stability 
of parameter estimates when participants perform the same task twice (test-retest reliability) or when 
estimating parameters from different subsets of the same dataset (split-half reliability). The reliability 
of RL models has recently become the focus of several parallel investigations (Weidinger et al., 2019; 
Brown et al., 2020; Pratt et al., 2021; Shahar et al., 2019), some employing very similar tasks to ours 
(Waltmann et al., 2022). The investigations collectively suggest that excellent reliability can often be 

https://doi.org/10.7554/eLife.75474
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achieved with the right methods, most notably by using hierarchical model fitting. Reliability might still 
differ between tasks or models, potentially being lower for learning rates than other RL parameters 
(Waltmann et al., 2022), and differing between tasks (e.g. compare Weidinger et al., 2019 to Brown 
et  al., 2020). In this study, we used hierarchical fitting for tasks A and B and assessed a range of 
qualitative and quantitative measures of model fit for each task (Eckstein et al., 2022; Master et al., 
2020; Xia et al., 2021), boosting our confidence in high reliability of our parameter estimates, and the 
conclusion that the lack of between-task parameter correlations was not due to a lack of parameter 
reliability, but a lack of generalizability. This conclusion is further supported by the fact that larger 
between-task parameter correlations (‍r > 0.5‍) than those observed in humans were attainable—using 
the same methods—in a simulated dataset with perfect generalization.

Model misspecification
Another concern relates to potential model misspecification and its effects on model parameter 
estimates: If components of the true data-generating process are not included in a model (i.e. a 
model is misspecified), estimates of existing model parameters may be biased. For example, if 
choices have an outcome-independent history dependence that is not modeled properly, learning 
rate parameters have shown to be biased (Katahira, 2018). Indeed, we found that learning rate 
parameters were inconsistent across the tasks in our study, and two of our models (A and C) did 
not model history dependence in choice, while the third (model B) only included the effect of one 
previous choice (persistence parameter), but no multi-trial dependencies. It is hence possible that 
the differences in learning rate parameters between tasks were caused by differences in the bias 
induced by misspecification of history dependence, rather than a lack of generalization. Though 
pressing, however, this issue is difficult to resolve in practicality, because it is impossible to include 
all combinations of possible parameters in all computational models, that is, to exhaustively search 
the space of possible models (‘Every model is wrong, but to varying degrees’). Furthermore, 
even though our models were likely affected by some degree of misspecification, the research 
community is currently using models of this kind. Our study therefore sheds light on generalizability 
and interpretability in a realistic setting, which likely includes models with varying degrees of 
misspecification. Lastly, our models were fitted to high standards and achieved good behavioral 
recovery (Fig. Appendix 4—figure 1), which also reduces the likelihood of model misspecification.

Difference in models between tasks
Another pressing issue is to what degree the claims of this study are dependent on the precise 
specification of the model for each task. For example, if all models included the same common 
set of parameters, would the same claims hold? This question could theoretically be addressed by 
using the same exact model (i.e. including the exact same equations and parameters) on all tasks. 
However, this approach is in practice unfeasible:

1) If we chose the ‘smallest common denominator’ model, that is, the simplest model that could 
produce behavior on all tasks (e.g. simple ‍α‍-‍β‍ RL), we would induce significant model misspecification 
as described above, and render fitted parameters—and claims about their generalizability and 
interpretability—uninterpretable.

2) However, choosing a ‘mega’ model including all current models as special cases is likewise impossible, 
for two reasons: First, even our relatively large dataset would not allow fitting such a big model due to 
the number of free parameters (i.e. the mega model would lose in model comparison to simpler models 
due to Occam’s razor). And second, each individual task is too restrictive to fit such a model (e.g. task B 
does not tax memory for states, and would not allow fitting the range of memory parameters present in 
the other two models). Taken together, from a theoretical perspective, comparing parameters of the same 
model between different tasks would provide a good test of parameter generalizability. However, this is 
in practice infeasible given current methods and standards (e.g. simplistic, highly-controlled tasks; current 
modeling practices, including model fitting; data limitations). Advances in any of these areas might lead to 
an increase in the generalizability and interpretability of computational modeling parameters in the future.

Taking a step back, current practices ostensibly force us to choose between model misspecification 
on one hand and model generality on the other (Navarro, 2019): If we use the same, general model 
for different tasks, we induce model misspecification as described above, leading to biased and 
uninterpretable parameters. But if we use task-specific models that reproduce human behavior more 
closely, we induce differences in parameterization that likely create differences in interpretation and 
generalizability.

https://doi.org/10.7554/eLife.75474
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Appendix 8
Other supplemental figures
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Appendix 8—figure 1. Between-task parameter correlations. (A) Parameter ‍α+‍ across tasks (‍log(α+)‍ in task C). 
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indicates age. Inserted are Spearman correlation statistics.
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Appendix 8—figure 4. Additional PCA results. (A) Cumulative variance explained by all PCs of the PCA (Figure 3; 
2.2.1). The smooth, non-stepped function does not provide evidence for lower-dimensional structure within 
the dataset. (B) Feature loadings (weights) of PC4-PC9. Loadings are flipped based on their relation to task 
performance, like for PC2-PC3 in Figure 3. (C) Age trajectories of the top 8 PCs, by age group. Corresponding 
statistics in Appendix 8—table 1.

Appendix 8—table 1. Statistics of regular regression models predicting each PC from two age 
predictors (linear and quadratic).

PC Effect ‍β‍ t p sig.

1 age (linear) 1.56 6.56 ***

age (quadratic) 0.035 5.61 ***

2 age (linear) 0.34 2.17 0.031 *

age (quadratic) 0.007 1.64 0.10 —

3 age (linear) 0.46 3.27 0.001 **

age (quadratic) –0.011 –3.13 0.002 **

Appendix 8—table 2. Statistics of mixed-effects regression models predicting parameter values 
from task (A, B, and C), age, and squared age (months).
Only effects including task are reported. * ‍p < .05‍; ** ‍p < .01‍, *** ‍p < .001‍.

Parameter Tasks Predictor p sig.

‍α+‍ task B & task A Task (main effect) 0.79 ‍< 0.001‍ ***

Task * linear age (interaction) –0.025 0.009 **

Task * quadratic age (interaction) 0.001 0.021 *

task B & task C Task (main effect) 0.84 ‍< 0.001‍ ***

Task * linear age (interaction) –0.012 0.41

Task * quadratic age (interaction) ‍< 0.001‍ 0.55

Appendix 8—table 2 Continued on next page
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Parameter Tasks Predictor p sig.

task A & task C Task (main effect) 0.048 0.70

Task * linear age (interaction) –0.12 0.37

Task * quadratic age (interaction) ‍< 0.001‍ 0.36

‍
1
β ‍ task B & task A Task (main effect) 0.49 ‍< 0.001‍ ***

Task * linear age (interaction) –0.026 0.046 *

Task * quadratic age (interaction) 0.001 ‍< 0.001‍ ***

‍α−‍ task B & task C Task (main effect) 11.70 ‍< 0.001‍ ***

Task * linear age (interaction) 0.58 ‍< 0.001‍ ***

Task * quadratic age (interaction) –0.013 ‍< 0.001‍ ***

Forgetting task B & task C Task (main effect) 0.10 0.36

Task * linear age (interaction) 0.005 0.70

Task * quadratic age (interaction) ‍< 0.001‍ 0.67

Appendix 8—table 2 Continued
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