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◥

HUMAN COGNITION

Foundations of human reasoning in
the prefrontal cortex
Maël Donoso,1,2,3 Anne G. E. Collins,2,4 Etienne Koechlin1,2,3*

The prefrontal cortex (PFC) subserves reasoning in the service of adaptive behavior. Little
is known, however, about the architecture of reasoning processes in the PFC. Using
computational modeling and neuroimaging, we show here that the human PFC has two
concurrent inferential tracks: (i) one from ventromedial to dorsomedial PFC regions that
makes probabilistic inferences about the reliability of the ongoing behavioral strategy and
arbitrates between adjusting this strategy versus exploring new ones from long-term
memory, and (ii) another from polar to lateral PFC regions that makes probabilistic
inferences about the reliability of two or three alternative strategies and arbitrates
between exploring new strategies versus exploiting these alternative ones. The two tracks
interact and, along with the striatum, realize hypothesis testing for accepting versus
rejecting newly created strategies.

H
uman reasoning subserves adaptive behav-
ior and has evolved facing the uncertainty
of everyday environments. In such situa-
tions, probabilistic inferential processes (i.e.,
Bayesian inferences) make optimal use of

available information for making decisions. Hu-
man reasoning involves Bayesian inferences ac-
counting for human responses that often deviate
from formal logic (1). Bayesian inferences also
operate in the prefrontal cortex (PFC) and guide
behavioral choices (2, 3). Everyday environments,
however, are changing and open-ended, so that
the range of uncertain situations and associated
behavioral strategies (i.e., internal maps linking
stimuli, actions, and expected outcomes) becomes
potentially infinite. In such environments, proba-
bilistic inferences involve Dirichlet processmixtures
(4–7) and rapidly yield intractable computations.
This computational complexity problem consti-
tutes a fundamental constraint on the evolution
of higher cognitive functions and raises the issue
of the actual nature of inferential processes im-
plemented in the PFC.

A model of reasoning processes in the
human PFC

To address this issue, we proposed a model (8)
that describes human reasoning, as it guides
behavior, as a computationally tractable, online
algorithm approximating Dirichlet process mix-
tures (9). The algorithmcombines forwardBayesian
inferences operating over a few concurrent behav-
ioral strategies stored in long-term memory with

hypothesis testing for possibly updating this
inferential buffer with new strategies formed from
long-term memory. The algorithm notably serves
to arbitrate between (i) staying with the ongoing
behavioral strategy and possibly learning external
contingencies, (ii) switching to other learned strat-
egies, and (iii) forming new behavioral strategies.
For integrating online Bayesian inferences

and hypothesis testing, the algorithm’s key fea-
ture is inferring the absolute reliability of every

monitored strategy: namely, the posterior pro-
bability that the current situation matches the
situation the strategy has learned, given both
action outcomes (and possibly contextual cues),
and the possibility that no match occurs with any
monitored strategies. To estimate these probabil-
ities, the model assumes that, in the latter case,
action outcomes expected from the monitored
strategies are equiprobable (9). Thus, every mon-
itored strategy may appear as being either reli-
able (i.e., more likelymatching than notmatching
the current situation) or unreliable (the converse).
When a strategy is reliable, the others are neces-
sarily unreliable, so that the algorithm is an ex-
ploitation state (Fig. 1): The reliable strategy is the
actor, namely, the unique strategy for selecting
and learning the actions that maximize rewards
(typically through reinforcement learning), whereas
the othermonitored strategies are treated as coun-
terfactual. When all monitored strategies become
unreliable, the algorithm then switches into an ex-
ploration state corresponding to hypothesis test-
ing: Anew strategy is formed as aweightedmixture
of strategies stored in long-term memory, then
probed andmonitored as actor (9). If the strategy
is a priori unreliable, this probe actor learns, so
that the algorithm may subsequently return to
the exploitation state in two ways. Either one
counterfactual strategy becomes reliable, while
the probe actor remains unreliable: The former
is then retrieved as actor, and the latter is rejected
(disbanded). Or the probe actor becomes reliable,
while counterfactual strategies remain unreliable.
The probe actor is then confirmed: It remains
the actor, the new strategy is simply consoli-
dated into long-termmemory, and the repertoire
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Fig. 1. A model of human reasoning.
Solid squares, behavioral strategies
stored in long-term memory. li, lj, lk,
and lp denote absolute reliabilities of
monitored strategies inferred from
action outcomes (here, the inferential
capacity is three). Purple, actor strategy learning external con-
tingencies and selecting action maximizing rewards. In exploitation
periods, the actor is reliable (i.e., lactor > 1 – lactor or lactor > ½) and the others are necessarily unreliable
(because ∑l ≤ 1). Otherwise, the system switches into exploration (all l < ½) and creates a probe actor (p)
from mixing strategies stored in long-term memory (blue). Exploration periods terminate when either one
counterfactual strategy ( j) or probe actor (p) becomes reliable: The probe actor is then rejected (red) or
confirmed (orange). See text for details.



of stored strategies is expanded. In case the
inferential buffer has further reached its capacity
limit, the counterfactual strategy used the least
recently as actor is then discarded from the buffer
(but remains stored in long-term memory).
Consistent with the capacity limit of human

working memory (10), human decisions are best
predicted when the inferential buffer is limited
to two or three concurrent counterfactual strat-
egies (8). We then hypothesized that the human
PFC implements this algorithm. We expected an-
terior PFC regions to form the inferential buffer
(3, 11–13) and more posterior PFC regions in asso-
ciation with basal ganglia to drive actor learning,
selection, and creation on the basis of hypothesis
testing (14–18). The model predicts that anterior
PFC regions concurrently infer the absolute re-
liability of actor and counterfactual strategies that
the algorithm builds online. More posterior PFC
regions then detect when, in the inferential buffer,
actor strategies become unreliable for creating
probe actors, as well as when counterfactual strat-
egies become reliable for retrieving them as actor
(and possibly rejecting probe actors). In basal
ganglia, the ventral striatum subserves reinforce-
ment learning (16, 19, 20) and is predicted to
detect when, in the inferential buffer, probe actors
become reliable for confirming them in long-term
memory (21).

Behavioral paradigm

To test these predictions, we used functionalmag-
netic resonance imaging (fMRI) and scanned 40
healthy participants, while they were responding
to successively presented digits and searching
for three-digit combinations by trial and error
(fig. S1) (9). Feedbacks were noisy, and combi-
nations changed episodically. Unbeknownst to
them, participants performed two distinct ses-
sions. In the open session, every episode corre-
sponded to new combinations, whereas in the
recurrent session, only three combinations re-
occurred unpredictably across episodes. The pro-
tocol thus induced participants to reason from
feedbacks whether they had to perseverate with
the same combination and possibly adjust it,
reuse previously learned ones, or learn by search-
ing for new combinations.
In every trial, participants’ responseswere either

correct, perseverative (incorrect in the current epi-
sode but correct in the preceding episode), or
exploratory (neither correct nor perseverative).
Overall, participants performed much below the
statistical optimum (8). In both conditions, correct
response rates increased from ∼5% at episode
onsets to a plateau at ∼85% about 25 trials later
(chance level: 25%) (Fig. 2, left). Exploratory re-
sponse rates increased from ∼10% at episode
onsets, peaked at ∼40% five trials later, and then
returned to ∼10% (chance level: 50%). Correct
responses increased and exploratory responses
vanished faster in the recurrent episodes than in
the open episodes (both F values > 21.8, P values <
0.0001). In the first trials of recurrent episodes,
furthermore, a positive feedback caused the pro-
duction of correct responses in the next trial, even
when the two successively presented digits differed:

The statistical dependence between two successive
correct responses increased in the first trials of
recurrent compared with open episodes (trials
1 and 2: T values > 2.25, P < 0.03) (Fig. 2, bottom),
while remaining similar in both conditions on the
following trials. In these first recurrent trials, ac-
cordingly, participants used feedbacks to retrieve
previously learned combinations rather than re-
collecting each digit-response association sepa-
rately. Participants consequently built and stored
multiple combinations and monitored feedbacks
for either retrieving these combinations or learning
new ones. Combinations thus defined behavioral
strategies associating digits, responses, and ex-
pected feedbacks.
We fit the model free parameters (buffer-

capacity, prior reliability, recollection entropy of
probe actors, and reinforcement learning param-
eters) to each participant’s series of responses
(table S1) (9). In both recurrent and open epi-
sodes, the fitted model predicted participants’ re-
sponses and their statistical dependencies across
successive trials (Fig. 2, right). The model fit sig-
nificantly better than alternative models, inde-
pendently of model complexity and fitting criteria
(fig. S2) (9). Moreover, fitted parameters were
independent of which session was fitted (T < 1)
and, consequently, unrelated to the number of

combinations used in recurrent sessions. The
best-fitting capacity—whether fixed or averaged
across subjects—included two counterfactual
strategies (mean = 2.6, SEM = 0.24, median = 2)
(table S1).
The model critically reveals that the gradual

variations of responses reported above are ac-
tually artifacts from aligning performances from
episode onsets and averaging across episodes
(Fig. 3). After most episode changes (93.9% and
94.2% of recurrent and open episodes, respec-
tively), indeed, the algorithm switched from ex-
ploitation to exploration and created probe actors
from long-term memory at variable time points
across episodes [on average 3.3 (SD = 0.9) and
4.2 (SD = 1.3) trials after recurrent and open epi-
sode onsets, respectively]. We refer to these algo-
rithmic transitions as switch-in events. Realigning
model and participants’ performances on these
switch-in events rather than episode onsets (Fig. 3,
left) shows that, in exploitation trials preceding
switch-in events, both model and participants’
responses were virtually unaffected by episode
changes and remainedmostly perseverative (∼85
to 90%), whereas residual responses remained
randomly distributed across exploratory and cor-
rect responses (∼8%and∼4%of residual responses,
respectively). In switch-in trials, by contrast,
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perseverative responses abruptly dropped off
(∼40%), and exploratory responses abruptly in-
creased to a plateau (∼35 to 40%). In explora-
tion trials following switch-in events, bothmodel
and participants’ exploratory responses remain
on the plateau, whereas perseverative responses
slowly decreased (correct responses consequent-
ly increased slowly).
In 43% of recurrent episodes, the algorithm

terminated these exploration periods by retriev-
ing counterfactual strategies and rejecting probe
actors [on average 10.1 (SD = 3.2) after episode
onsets]. In the remaining recurrent episodes (57%)
and most open episodes (84%), the algorithm

terminated exploration by confirming probe ac-
tors in long-term memory [on average 6.7 (SD =
3.3) and 8.1 (SD = 3.9) trials after recurrent and
open episode onsets, respectively]. We refer to
these algorithmic transitions as rejection and
confirmation events, respectively. Realigning
again model and participants’ performances on
these rejection and confirmation events reveals
that (Fig. 3, right), when rejection events occurred,
both model and participants’ correct responses
abruptly increased and exploratory responses
abruptly dropped off; when confirmation events
occurred, by contrast, correct and exploratory
responses exhibited no abrupt changes and, as

expected, gradually increased and decreased, re-
spectively (more results in supplementary text).

Brain activations associated with
reasoning computations

We then investigated whether fMRI activations
confirm the implementation of the proposed
algorithm in the PFC. To identify activations
associated with inferring strategies’ absolute
reliability, we considered three reliability varia-
bles derived from the best-fitting model: actor
and first- and second-alternative reliability. We
entered these variables orthogonalized in that
order in a unique regression analysis, which also
included algorithmic events switch-in, rejection,
and confirmation as regressors, along with those
modeling exploration and exploitation trials (9).
The regression factored out possible confounding
variables including reward expectations, outcome
predictions, and feedback values. We identified
activations using significance thresholds set to
P = 0.05 (familywise error corrected for multiple
comparisons over the frontal lobes), and post hoc
analyzes removed selection biases (22).
Strategies’ reliability correlated with anterior

PFC activations. Actor reliability correlated with
ventromedial PFC (vmPFC) and perigenual ante-
rior cingulate (pgACC) cortex activations, whereas
right frontopolar cortex (FPC) activations corre-
lated concurrently with both first- and second-
alternative reliability (Fig. 4). No other regions
exhibited such correlations (P > 0.01, uncorrected).
vmPFC and pgACC activations that increased with
actor reliability further decreased with first- and,
more strongly, with second-alternative reliability,
whereas right FPC activations decreased with
actor reliability while increasing with first- and,
more strongly, with second-alternative reliability
(Fig. 4). The symmetrical, left FPC region mar-
ginally exhibited the same activation pattern
as the right FPC (actor and first- and second-
alternative reliability: all T > 1.99, P < 0.053).
Accordingly, the less a strategy was eligible as
actor, the more its reliability elicited FPC de-
trimentally to vmPFC and/or pgACC activations.
vmPFC-pgACC and left FPC activations were
also associated with feedback values (T > 2.43,
P < 0.0195), from which strategies’ reliability is
inferred.
Using the same regression analysis, we next

examined activations in switch-in, rejection, and
confirmation events associated with hypothesis
testing. These algorithmic events elicited more
posterior PFC activations. Medially, the dorsal
ACC (dACC) responded selectively to switch-in
events (Fig. 5A). Switch-in events elicited larger
dACC responses than exploitation and explora-
tion trials (both T > 3.59, P < 0.001) and than
rejection and confirmation events (both T = 2.02,
P = 0.05). The latter events elicited no significant
dACC responses compared with exploitation and
exploration trials (T < 2.02, P > 0.05). Confir-
mation events elicited only marginal dACC re-
sponses (T = 2.32, P = 0.03). Laterally, the left PFC
[Brodmann’s area (BA) 45, middle lateral pre-
frontal cortex (mid-LPC)] responded selectively
to rejection events (Fig. 5B). Rejection events
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elicited larger mid-LPC activations than exploi-
tation and exploration trials (both T > 4.53, P <
0.00006) and than switch-in and confirmation
events (joint effect: T = 2.38, P = 0.022). The
latter events elicited no significant mid-LPC re-
sponses (both T < 1.69, P > 0.10). Both the dACC
and mid-LPC exhibited no differential responses
between exploitation and exploration trials (Ts < 1)
(Fig. 5, A and B) and no responses in the trials
immediately preceding and following switch-in
and rejection events (Fig. 6). Thus, dACC andmid-
LPC responses to switch-in and rejection events,
respectively, reflected the algorithmic transitions
rather than the differential production of per-
severative, exploratory versus correct responses
and associated cognitive states around these events.
Furthermore, as both switch-inand rejectionevents
involve actor switching based on the same reli-
ability threshold (= ½), these differential activa-
tions could not simply reflect choice uncertainty

and general inhibition or selection mechanisms
across monitored strategies. Instead, these re-
sults indicate that the dACC detects when actors
monitored in the pgACC-vmPFC become unre-
liable for triggering the creation of probe actors,
whereas the mid-LPC detects when counter-
factual strategies monitored in the FPC become
reliable for retrieving them as actor.
Only the ventral striatum responded selectively

to confirmation events (Fig. 5C). Confirmation
events elicited larger ventral-striatal activations
than exploitation and exploration trials (both T >
3.59, P < 0.0009) and than switch-in and rejection
events (both T > 2.99, P < 0.005). There were no
significant ventral-striatal responses to switch-in
and rejection events compared with exploitation
and exploration trials (all T < 1.99, P > 0.06) nor
differential ventral-striatal responses between ex-
ploitation and exploration trials (T= 1.11,P=0.27),
nor significant ventral-striatal responses in the
trials immediately preceding and following con-
firmation events (Fig. 6). The region concurrently
responded to reward predictions errors: Ventral
striatal activations correlated both positively with
feedback rewarding values (T = 5.04, P = 0.00002)
and negatively with reward expectations (T= 4.25,
P = 0.00013). Thus, beyond its involvement in
actor reinforcement learning over trials (16), the
ventral striatum exhibited additional responses in
confirmation events. Because the vmPFC-pgACC
projects to the ventral striatum (23) and encoded
actor reliability, the evidence is that the ventral
striatum detects when newly created strategies
driving behavior become reliable, presumably for
confirming their storage in long-term memory.
The dorsal striatum responded selectively to

switch-in events (fig. S3), whereas bilateral poste-
rior PFC (BA 44, post-LPC) and left premotor
regions responded to both switch-in and confir-
mation events (fig. S4). These activations accord
with the involvement of posterior frontal-striatal
circuits in forming and storing action sets (18):
Dorsal- and ventral-striatal responses correlated
with premotor and post-LPC responses in switch-
in and confirmation events, respectively, when
the algorithm created and confirmed probe actors
in long-termmemory (fig. S5). We found no other
frontal and basal responses (P > 0.05, uncorrected)
except bilateral responses to switch-in events in
FPC regions reported above (fig. S3), which likely
reflected that, concomitant to probe actor creation,
the former actor registers as an additional coun-
terfactual strategy in the inferential buffer (more
results in supplementary text).

Prefrontal foundations of human reasoning

The predicted algorithmic transitions associated
with hypothesis testing and accounting for par-
ticipants’ behavior occurred within the frontal
lobes in the expected PFC and striatal regions.
Moreover, the anterior PFC encoded the pre-
dicted absolute reliability signals associated with
the concurrent behavioral strategies the algorithm
creates, learns, tests, and retrieves for driving
action. These results support the hypothesis
that the proposed algorithm describes reason-
ing PFC processes guiding adaptive behavior

(supplementary text). Accordingly, the frontal
lobes implement two concurrent inferential tracks.
First, a medial track comprising the vmPFC-
pgACC, dACC, and ventral striatum makes infer-
ences about the actor strategy that, through
reinforcement learning, selects and learns the
actions maximizing reward. Whereas the vmPFC-
pgACC infers the actor’s absolute reliability, the
dACC detects when it becomes unreliable for
triggering exploration—i.e., the formation of a
new strategy from long-termmemory to serve as
actor. The ventral striatum then detects when this
new actor strategy becomes reliable, which termi-
nates exploration and confirms it in long-term
memory. Second, a lateral track comprising the
FPC and mid-LPC makes inferences about two or
three alternative strategies stored in long-term
memory. Whereas the FPC concurrently infers the
absolute reliability of these counterfactual strat-
egies from action outcomes, the mid-LPC detects
whenonebecomes reliable for retrieving it as actor.
Thismedial-lateral segregation stems from the

model core notion of absolute reliability, which
yields to distinguishing between switching away
from ongoing behavior (the actor becomes un-
reliable) versus switching to another behavioral
strategy stored in long-term memory (one coun-
terfactual strategy becomes reliable). In this pro-
tocol, the two events never coincided, which
would have required alternating between only
two recurrent situations associated with two dis-
tinct strategies (the actor unreliability then im-
plies the reliability of the alternative strategy)
(24). The dACC thus triggers switching away
from ongoing behavior with the formation of
new behavioral strategies, whereas the mid-LPC
enables the switch to counterfactual strategies.
The model may thus explain dACC activations
observed in detecting unexpected action out-
comes (25), switching to exploratory behaviors
(26) and starting new behavioral tasks (27), and
LPC activations in retrieving task sets (15, 28).
Consistent with the model prediction, moreover,
the dACC and mid-LPC coactivate when partic-
ipants switch back and forth between only two
alternative behaviors (11).
The model further indicates that the coupling

between the medial and lateral track realizes
hypothesis testing bearing upon new behav-
ioral strategies created from long-term memory.
Serving as a probe actor initially set as being
unreliable, newly created strategies are disbanded
when the mid-LPC detects that one counter-
factual strategy has become reliable for retriev-
ing it as actor. However, the ventral striatum
adjusts probe actors to external contingencies
through reinforcement learning (16, 19, 20) and
detects when probe actors eventually become
reliable. In that event, the ventral striatum con-
firms probe actors in long-term memory as ad-
ditional, subsequently recoverable, strategies.
The interplay between the dACC, mid-LPC, and
ventral striatum thus controls switches in and
out of exploration periods corresponding to hy-
pothesis testing of newly created strategies. Ac-
cordingly, every decision to create new strategies
may be subsequently revised according to new
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corrected) and P < 0.05 (cluster-wise) for display
purpose). Montreal Neurological Institute (MNI) co-
ordinates of activation peaks are showed in brack-
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bars are SEM across participants. *P < 0.05.
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information, which is critical in optimal adaptive
processes operating in open-ended environments
for dealing with the intrinsic nonparametric na-
ture of strategy creation (4).
Hypothesis testing derives from inferences

about the absolute reliability of actor and two
or three counterfactual strategies, which involved
the vmPFC-pgACC and FPC, respectively. The dis-
sociation supports the distinction between the
notion of actor and a counterfactual strategy and
accords with the vmPFC-pgACC and FPC involve-
ment inmonitoring ongoing and unchosen courses
of action, respectively (3, 11, 12, 29, 30). Strategy
absolute reliability measures to which extent the
strategy is applicable to the current situation—i.e.,
current external contingencies and those learned

by the strategy result from the same latent cause.
The vmPFC-pgACC thus infers towhich extent the
latent cause determining current action outcomes
remains unchanged. The FPC infers to which
extent the latter result from two or three pre-
viously identified latent causes. Latent causes
are abstract constructs resulting from hypothesis
testing implemented through the interplay between
the dACC, mid-LPC, and ventral striatum. Latent
causes organize long-term memory as a reper-
toire of behavioral strategies treated as separable
entities. By detecting the reliability or unreli-
ability of monitored strategies, the dACC, mid-
LPC, and ventral striatum then appear to implement
true or false exclusive judgments about possible
causes of observed contingencies for selecting

appropriate behavioral strategies. The model
thus describes how the PFC forms a unified in-
ferential system subserving reasoning in the ser-
vice of adaptive behavior. Among the prefrontal
regions, the FPC is likely specific to humans
(31, 32), which suggests that the ability to jointly
infer multiple possible causes of observed con-
tingencies and, consequently, to test new causal
hypotheses emerging from long-term memory is
unique to humans.
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Fig. 6. Prefrontal and
striatal responses
around algorithmic
transitions. Magnetic
resonance responses
to feedbacks in dACC,
mid-LPC, and ventral
striatum on trials
preceding and following
switch-in, rejection,
and confirmation
events. Bars are
partial correlation
coefficients (betas)
from the regression
analysis (a.u., arbitrary
units) described in the
text and corresponding
to event-related
regressors modeling
switch-in, rejection,
and confirmation
events shifted 0, 1, or
2 trials preceding and following actual occurrences of these events. Error bars are SEM across subjects.
Maximal and significant responses (when corrected for multiple comparisons around algorithmic events)
were elicited only when the events occurred in the algorithm.
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QUANTUM METROLOGY

Optically measuring force near the
standard quantum limit
Sydney Schreppler,1* Nicolas Spethmann,1 Nathan Brahms,1† Thierry Botter,1‡
Maryrose Barrios,1§ Dan M. Stamper-Kurn1,2

The Heisenberg uncertainty principle sets a lower bound on the noise in a force
measurement based on continuously detecting a mechanical oscillator’s position. This
bound, the standard quantum limit, can be reached when the oscillator subjected to the
force is unperturbed by its environment and when measurement imprecision from
photon shot noise is balanced against disturbance from measurement back-action. We
applied an external force to the center-of-mass motion of an ultracold atom cloud in
a high-finesse optical cavity and measured the resulting motion optically. When the
driving force is resonant with the cloud’s oscillation frequency, we achieve a sensitivity
that is a factor of 4 above the standard quantum limit and consistent with theoretical
predictions given the atoms’ residual thermal disturbance and the photodetection
quantum efficiency.

S
everal decades ago, mounting efforts to
detect directly the gravitational radia-
tion produced by distant astrophysical
sources prompted investigation of the
detection limits imposed by the quantum-

mechanical properties of the sensors (1–3).
Early gravitational wave detectors (4) and sub-
sequent table-top force-measurement systems
(5, 6) were dominated by thermal noise that
masked the contributions of detection uncer-
tainty from the measurements themselves.
Additionally, technical sources of optical noise
emerging at high measurement strength
obscured the effect of measurement back-action
in macroscopic systems subject to strong op-
tical probing (6), delaying until recently the
observation of such back-action noise (7, 8). A
purely quantum limit to force-measurement
sensitivity for a continuously probed mechan-

ical oscillator occurs when thermal noise
has been reduced to the level of zero-point fluc-
tuations. This standard quantum limit (SQL) is
reached when noise introduced by the mea-

surement, which uses a coherent state of probe
light, is carefully balanced with the statistical
fluctuations of the measurement outcome. A
wide array of platforms, having sizes span-
ning many orders of magnitude, have pushed
ever closer to the SQL (9–12). Sensitivity to
forces as small as ð390 yNÞ2=Hz has been re-
ported (13); however, measured noise levels
are still six to eight orders of magnitude larger
(that is, much less sensitive) than the SQL
(14, 15).
One way to measure a small force is to apply

it to a mechanical harmonic oscillator and then
to detect the resulting motion by illuminating
the oscillator with light and measuring the phase
shift of the reflected beam. Measurement strength
is enhanced by placing the oscillator within a
resonant optical cavity (16). In such an opto-
mechanical system, measurement strength can
be characterized by the optomechanical cooper-
ativity Com ¼ 4ng2om=ðkGÞ, where n is the num-
ber of probe photons within the cavity, gom is
the single-photon optomechanical coupling rate,
G is the mechanical oscillator full-linewidth, and
k is the optical cavity half-linewidth. Com can be
understood as the rate at which one gathers in-
formation about the oscillator’s motion relative
to optical and mechanical decay rates. Quanti-
zation of the optical cavity’s electromagnetic
field (shot noise) sets a lower bound on the im-
precision of an optical phase measurement,
which varies inversely with Com. In the regime
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