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Abstract:	  32 

Reinforcement learning in simple instrumental tasks is usually modeled as a monolithic 33 

process in which reward prediction errors are used to update expected values of  choice 34 

options. This modeling ignores the different contributions of different memory and 35 

decision-making systems thought to contribute even to simple learning. In an fMRI 36 

experiment, we asked how working memory and incremental reinforcement learning 37 

processes interact to guide human learning. Working memory load was manipulated by 38 

varying the number of stimuli to be learned across blocks. Behavioral results and 39 

computational modeling confirmed that learning was best explained as a mixture of two 40 

mechanisms: a fast, capacity-limited, and delay-sensitive working memory process 41 

together with slower reinforcement learning. Model-based analysis of fMRI data showed 42 

that striatum and lateral prefrontal cortex were sensitive to reward prediction error, as 43 

shown previously, but critically, these signals were reduced when the learning problem 44 

was within capacity of working memory. The degree of this neural interaction related to 45 

individual differences in the use of working memory to guide behavioral learning. These 46 

results indicate that the two systems do not process information independently, but 47 

rather interact during learning. 48 

Significance	  Statement	  	  49 

Reinforcement learning theory has been remarkably productive at improving our 50 

understanding of instrumental learning as well as dopaminergic and striatal network 51 

function across many mammalian species. However, this neural network is only one 52 

contributor to human learning, and other mechanisms such as prefrontal cortex working 53 

memory, also play a key role. Our results show in addition that these other players 54 

interact with the dopaminergic RL system, interfering with its key computation of reward 55 

predictions errors. 56 

Intro:	  	  57 

Reinforcement learning (RL) theory (Sutton & Barto 1998) proposes that we can learn 58 

the value associated with various choices by computing the discrepancy between the 59 

reward we obtain and our previously estimated value, and proportionally adjusting our 60 

estimate. This discrepancy, the reward prediction error (RPE), signals a valenced 61 
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surprise at the outcome being better or worse than expected and a direction to adapt 62 

behavior (Pessiglione et al. 2006; Schönberg et al. 2007; Daw & Doya 2006).  In the 63 

brain, cortico-basal ganglia loops appear to implement a form of algorithmic RL: 64 

Dopamine-dependent plasticity in the striatum may reinforce selection of choices leading 65 

to positive RPEs and weaken those leading to negative RPEs (Frank et al. 2004; Collins 66 

& Frank n.d.). Dopaminergic neurons exhibit phasic changes in their spike rates that 67 

convey RPEs (Montague et al. 1996; Schultz 2002), and dopamine release in target 68 

regions provides a bidirectional RPE signal (Hart et al. 2014). Human imaging studies 69 

have indeed found that striatal BOLD correlates with RPE and is enhanced by DA 70 

manipulations (Pessiglione et al. 2006; Schönberg et al. 2007; Jocham et al. 2011). 71 

 72 

However, other neurocognitive processes contribute to learning besides the integration 73 

of reward history by RL. Specifically, executive processes (such as those involved in 74 

representing sequential or hierarchical task structure) contribute substantially to human 75 

learning over and above incremental RL (Daw et al. 2011; Badre & Frank 2011; 76 

Botvinick et al. 2009; Collins & Koechlin 2012; Collins & Frank 2013). Even in basic 77 

stimulus-response learning tasks, working memory (WM) contributes substantially to 78 

instrumental learning beyond RL (Collins & Frank 2012; Collins et al. 2014), as 79 

evidenced by both behavioral analyses and quantitative computational model fits. Two 80 

effects of WM were evident in learning. As WM set size increased (working memory 81 

load), learning curves per stimulus were slowed. Second, accuracy per trial declined as 82 

a function of the number of intervening items (working memory delay). These WM 83 

effects decayed with further experience, as the more reliable but slower RL process 84 

gained control of behavior. A hybrid model of WM and RL provided a better fit to these 85 

data than either process itself (Collins & Frank 2012; Collins et al. 2014),.   86 

 87 

This prior behavioral work implies that WM contributes to RL processes. Here, we 88 

investigate the neural markers of learning and RPEs to determine whether they are 89 

interact with WM.  While many RL studies have revealed neural correlates of RPEs that 90 

relate to learning, these studies have not manipulated or estimated WM factors that 91 

could contribute to (and potentially confound) these signals. Identifying separate markers 92 

of systems that contribute jointly to behavior also provides an opportunity to explore 93 

whether they interact (e.g., competitively or cooperatively). Specifically, we tested 94 

whether frontoparietal networks associated with cognitive control and striatal systems 95 
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associated with RL would show parametric modulations of RPE signaling as a function 96 

of WM load during learning.  We also tested whether such interactions would be 97 

predictive of the extent to which individuals relied on WM contributions to RL 98 

behaviorally. 99 

Methods:	  100 

Participants:	  	  101 

We scanned 26 participants (ages 18-31, mean age 23, 15 males/11 females). All 26 102 

participants are included in the behavioral analysis. 5 participants were excluded from 103 

fMRI analysis prior to analyzing their fMRI data due to head movement greater than our 104 

voxel size. 2-6 blocks were excluded from 3 other participants due to movement during 105 

data collection towards the end of the scan. All participants were right-handed with 106 

normal or corrected-to-normal vision and were screened for the presence of psychiatric 107 

or neurological conditions and contraindications for fMRI. All participants were 108 

compensated for their participation and gave informed, written consent as approved by 109 

the Human Research Protection Office of Brown University. 110 

Experimental	  design:	  111 

The task (Fig1) was similar to that described previously (Collins & Frank 2012; Collins et 112 

al. 2014),, itself adapted from a classic Conditional Associative Learning paradigm 113 

(Petrides 1985). On each trial, subjects had to respond with one of three responses 114 

(button presses on a response pad) when presented with a centrally displayed single 115 

stimulus. Subjects had to learn over trials which response was correct for each stimulus, 116 

based on binary deterministic reinforcement feedback (Collins & Frank 2012; Collins et 117 

al. 2014),. 118 

 119 

To manipulate working memory demands separately from RL components, we 120 

systematically varied the number of stimuli (denoted as set size ns) to be learned within 121 

a block. Larger set sizes provide greater load on working memory, and also impose on 122 

average larger delays between repetitions of the same stimulus. Subjects experienced 3 123 

blocks of each of the set-sizes one through six. In each block, subjects learned about a 124 

different category of visual stimulus (such as sports, fruits, places, etc.), with stimulus 125 
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category assignment to block set size counterbalanced across subjects. Block ordering 126 

was also counterbalanced within subjects to ensure an even distribution of high/low load 127 

blocks across each third of the experiment.  128 

 129 
Figure 1: Experimental Protocol. At the beginning of each block, subjects were shown for 10 s 130 
the set of stimuli they would see in that block. In this example, Block 1 uses color patches for 131 
stimuli and has a set size ns =2; Block n uses shapes and has ns =6. Each trial included the 132 
presentation of a stimulus for 0.5s followed by a blue fixation cross until subject pressed one of 133 
three buttons, or up to 1.5s after trial onset. Button press caused the fixation cross to turn white. 134 
Feedback was presented for 1s, and came 1.5s after trial onset. Feedback consisted of the words 135 
correct or incorrect in green and red, respectively. The inter-trial interval consisted of a white 136 
fixation cross with jittered duration to allow trial by trial event-related analysis of fMRI signal. 137 
Blocks set sizes varied between 1 and 6, and the order was randomized across subjects. 138 
 139 

At the beginning of each block, subjects were shown the entire set of stimuli for that 140 

block and were encouraged to familiarize themselves with them for a duration of 10 sec 141 

(figure 1 top). They were then asked to make their response as quickly and accurately 142 

as possible after each individual stimulus presentation. Within each block, stimuli were 143 

presented 12 times each in a pseudo-randomly intermixed order.  144 

 145 

Stimuli were presented in the center of the screen for up to 0.5s seconds, followed by a 146 

blue fixation cross for up to 1s or subjects making a choice by pressing one of 3 buttons, 147 

at which time the fixation cross turned white (figure 1 bottom). Feedback was presented 148 

1.5s after stimulus onset for 0.5s as either “Correct” in green, “Incorrect” in red, or “Too 149 

+ + Correct +

t+0.5s t+rt
t

t+1.5s t+2s
~ t+ 3.5s

    [2.5-7.5s]

10s 10s
Block 1 Block n Block 18
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slow” if the subject failed to answer within 1.5s. A white fixation cross followed with 150 

jittered duration of mean 1.5s, ranging [.5 6.5]s, before the next stimulus was presented. 151 

 152 

Subjects were instructed that finding the correct action for one stimulus was not 153 

informative about the correct action for another stimulus. This was enforced in the choice 154 

of correct actions, such that, in a block with e.g., nS=3, the correct actions for the three 155 

stimuli were not necessarily three distinct keys. This procedure was implemented to 156 

ensure independent learning of all stimuli (i.e., to prevent subjects from inferring the 157 

correct actions to stimuli based on knowing the actions for other stimuli). Prior to 158 

entering the scanner, subjects went through the instructions and practiced on a separate 159 

set-size 2 sets of images to ensure they were familiarized with the task. 160 

Computational	  model:	  161 

RLWM model: 162 

To better account for subjects’ behavior and disentangle roles of working memory and 163 

reinforcement learning, we fitted subjects’ choices with our hybrid RLWM computational 164 

model. Previous research showed that this model, allowing choice to be a mixture 165 

between a classic delta rule reinforcement learning process and a fast but capacity-166 

limited  and delay-sensitive working memory process, provided a better quantitative fit to 167 

learning data than models of either WM or RL alone (Collins & Frank 2012; Collins et al. 168 

2014),. The model used here is a variant of the previously published models. We first 169 

summarize its key properties, following by the details: 170 

• RLWM includes two modules which separately learn the value of stimulus-response 171 

mappings: a standard incremental procedural RL module with learning rate α, and a 172 

WM module that updates S-R-O associations in a single trial (learning rate 1) but is 173 

capacity-limited (with capacity K).  174 

• The final action choice is determined as a weighted average over the two modules’ 175 

policies. How much weight is given to WM relative to RL (the mixture parameter) is 176 

dynamic and reflects the probability that a subject would use WM vs. RL in guiding 177 

their choice. This weight depends on two factors. First, a constraint factor reflects the 178 

a priori probability that the item is stored in WM, which depends on set size nS of the 179 

current block relative to capacity K (i.e., if nS>K, the probability that an item is stored 180 

is K/ns), scaled by the subject’s overall reliance of WM vs. RL (factor 0<ρ<1), with 181 

higher values reflecting relative greater confidence in WM function.  Thus, the 182 
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constraint factors indicates that the maximal use of WM policy relative to RL policy is 183 

w0 = ρ x min(1, K/nS). Second, a strategic factor reflects the inferred reliability of the 184 

WM compared to RL modules over time: initially, the WM module is more successful 185 

at predicting outcomes than the RL module, but because it has higher capacity and 186 

less vulnerability to delay, the RL module becomes more reliable with experience. 187 

• Both RL and WM modules are subject to forgetting (decay parameters φRL and φWM). 188 

We constrain φRL < φWM  consistent with WM’s dependence on active memory).  189 

 190 

 191 

Learning model details. 192 

Reinforcement learning model: All models include a standard RL module with simple 193 

delta rule learning. For each stimulus s, and action a, the expected reward Q(s,a) is 194 

learned as a function of reinforcement history. Specifically, the Q value for the selected 195 

action given the stimulus is updated upon observing each trial's reward outcome rt (1 for 196 

correct, 0 for incorrect) as a function of the prediction error between expected and 197 

observed reward at trial t: 198 

Qt+1(s,a) = Qt(s,a) + α x δt, 199 

where δt= rt - Qt(s,a) is the prediction error, and α is the learning rate. Choices are 200 

generated probabilistically with greater likelihood of selecting actions that have higher Q 201 

values, using the softmax choice rule: 202 

p(a|s)=exp(βQ(s,a))/ Σi(exp(βQ(s,ai)). 203 

Here, β is an inverse temperature determining the degree with which differences in Q- 204 

values are translated into more deterministic choice, and the sum is over the three 205 

possible actions ai.  206 

 207 

Undirected noise. The softmax temperature allows for stochasticity in choice, but where 208 

stochasticity is more impactful when the value of actions are similar to each other.  We 209 

also allow for “slips” of action (“irreducible noise”, i.e., even when Q value differences 210 

are large). Given a model’s policy π = p(a|s),  adding undirected noise consists in 211 

defining the new mixture policy: 212 

π ‘ = (1- ε) π + εU, 213 

where U is the uniform random policy (U(a) = 1/nA, nA=3), and the parameter 0<ε<1  214 

controls the amount of noise (Collins & Koechlin 2012; Collins & Frank 2013; Guitart-215 
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Masip et al. 2012). (Nassar & Frank 2016) showed that failing to take into account this 216 

irreducible noise can render fits to be unduly influenced by rare odd datapoints (e.g. that 217 

might arise from attentional lapses), and that this problem is remedied by using a hybrid 218 

softmax-ε−greedy choice function as used here. 219 

 220 

Forgetting. We allow for potential decay or forgetting in Q-values on each trial, 221 

additionally updating all Q-values at each trial, according to:  222 

Q ß Q + φ (Q0-Q), 223 

where 0<φ<1 is a decay parameter pulling at each trial the estimates of values towards 224 

initial value Q0 = 1/nA. This parameter allows us to capture delay-sensitive aspects of 225 

WM, where active maintenance is increasingly likely to fail with intervening time and 226 

other stimuli, but also allows us to separately estimate any decay in RL values (which is 227 

typically substantially lower than in WM).  228 

 229 

Perseveration. To allow for potential neglect of negative, as opposed to positive 230 

feedback, we estimate a perseveration parameter pers such that for negative prediction 231 

errors (delta<0), the learning rate α is reduced by α = (1-pers) x α. Thus, values of pers 232 

near 1 indicate perseveration with complete neglect of negative feedback, whereas 233 

values near 0 indicate equal learning from negative and positive feedback.  234 

 235 

Working Memory. To implement an approximation of a rapid updating but capacity-236 

limited WM, this module assumes a learning rate α = 1 (representing the immediate 237 

accessibility of items in active memory), but includes capacity limitation such that only at 238 

most K stimuli can be remembered. At any trial, the probability of working memory 239 

contributing to the choice for a given stimulus is wWM(t) =Pt(WM). This value is dynamic 240 

as a function of experience (see next paragraph). As such, the overall policy is: 241 

π = wWM(t)πWM+ (1- wWM(t)) πRL 242 

where πWM is the WM softmax policy, and πRL is the RL policy. Note that this 243 

implementation assumes that information stored for each stimulus in working memory 244 

pertains to action-outcome associations. Furthermore, this implementation is an 245 

approximation of a capacity/resource-limited notion of working memory. It captures key 246 

aspects of working memory such as 1) rapid and accurate encoding of information when 247 

low amount of information is to be stored; 2) decrease in the likelihood of storing or 248 

maintaining items when more information is presented or when distractors are presented 249 
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during the maintenance period; 3) decay due to forgetting. Because it is a probabilistic 250 

model of WM, it cannot capture specifically which items are stored, but it can provide the 251 

likelihood of any item being accessible during choice given the task structure and recent 252 

history (set size, delay, etc).  253 

 254 

Inference: The weighting of whether to rely more on WM vs. RL is dynamically adjusted 255 

over trials within a block based on which module is more likely to predict correct 256 

outcomes. The initial probability of using WM wWM(0) = P0(WM) is initialized by the a 257 

priori use of WM, as defined above, wWM(0) = ρ x min(1, K/nS), where ρ is a free 258 

parameter representing the participant’s overall reliance on WM over RL. 259 

On each correct trial, wWM(t)=Pt(WM) is updated based on the relative likelihood that 260 

each module would have predicted the observed outcome given the selected correct 261 

action ac; specifically: 262 

- for WM, p(correct|stim, WM) = wWM πWM(ac) + (1-w WM)1/nA 263 

- for RL, p(correct|stim, RL) this is simply πRL (ac) 264 

The mixture weight is updated by computing the posterior using the previous trial’s prior, 265 

and the above likelihoods, such that 266 

𝑃!!! 𝑊𝑀 =   
𝑃! 𝑊𝑀 ×𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠𝑡𝑖𝑚,𝑊𝑀)

𝑃! 𝑊𝑀 ×𝑝 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑡𝑖𝑚,𝑊𝑀 + 𝑃! 𝑅𝐿 ×𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠𝑡𝑖𝑚,𝑅𝐿)
   

 and Pt+1(RL)=1-Pt+1(WM). 267 

  268 

 269 

Models Considered. We combined the previously described features into different 270 

learning models and conducted extensive comparisons of multiple models to determine 271 

which fit the data best (penalizing for complexity) so as to validate the use of this model 272 

in interpreting subjects’ data. For all models we considered, adding undirected noise, 273 

forgetting and perseveration features significantly improved the fit, accounting for added 274 

model complexity (see model comparisons).  275 

 276 

This left three relevant classes of models to consider: 277 

- RL: This model combines the basic delta rule RL with forgetting, perseveration 278 

and undirected noise features. It assumes a single system that is sensitive to 279 

delay and asymmetry in feedback processing. This is a 5-parameter model 280 
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(learning rate α, sofmax inverse temperature β, undirected noise ε, decay φRL, 281 

and pers parameter). 282 

- RL6: This model is identical to the previous one, with the variant that learning 283 

rate can vary as a function of set-size. We have previously shown that while such 284 

a model can capture the basic differences in learning curves across set-sizes by 285 

fiting lower learning rates with higher set sizes, it provides no mechanism that 286 

would explain these effects, and still cannot capture other more nuanced effects 287 

(e.g. changes in the sensitivity to delay with experience). However it provides a 288 

benchmark to compare with RLWM. This is a 10-parameter model (6 learning 289 

rate αns, sofmax inverse temperature β, undirected noise ε, decay φRL, and pers 290 

parameter). 291 

- RLWM: This is the main model, consisting of a hybrid between RL and WM. RL 292 

and WM modules have shared softmax β and pers parameters, but separate 293 

decay parameters, φRL and φWM, to capture their differential sensitivity to delay. 294 

Working memory capacity is 0<K<6, with an additional parameter for overall 295 

reliance on working memory 0<ρ<1. Undirected noise is added to the RLWM 296 

mixture policy. This is an 8-parameter model (capacity K, WM reliance ρ, WM 297 

decay φWM, RL learning rate α, RL decay φRL,softmax inverse temperature β, 298 

undirected noise ε,  and pers parameter). 299 

 300 

In the RLWM model presented here, the RL and WM modules are independent, and only 301 

compete for choice at the policy level. Given our findings showing an interaction 302 

between the two processes, we also considered variants of RLWM including 303 

mechanisms for interactions between the two processes at the learning stage. These 304 

models provided similar fit (measured by AIC) to the simpler RLWM model. We chose to 305 

use the simpler RLWM model, because the more complex model is less identifiable 306 

within this experimental design, providing less reliable parameter estimates and 307 

regressors for model-based analysis.  308 

 309 

RLWM fitting procedure: We used matlab optimization under constraint function 310 

fmincon to fit parameters. This was iterated with 50 randomly chosen starting points, to 311 

increase likelihood of finding a global rather than local optimum. For models including 312 
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the discrete capacity K parameter, this fitting was performed iteratively for capacities K = 313 

{1,2,3,4,5}, using the value gave the best fit in combination with other parameters.  314 

 315 

Softmax β temperature was fit with constraints [0 100]. All other parameters were fit with 316 

constraints [0 1]. We considered sigmoid-transforming the parameters to avoid 317 

constraints in optimization and obtain normal distributions, but while fit results were 318 

similar, distributions obtained were actually not normal. Thus, all statistical tests on 319 

parameters were non-parametric. See table 4 for fit parameter statistics. 320 

 321 

Other competing models: 322 

In order to further test whether “single system” models, as opposed to hybrid models 323 

including an RL and a WM component, could account for behavior, we tested other 324 

algorithms embodying alternative assumptions in which behavior is governed by a single 325 

learning process (either RL or WM).   326 

- The WMd model is similar to a WM module, with the following changes. A) there 327 

is no capacity limitation. B) Instead of being fixed, the decay parameter is fixed to 328 

an initial value which then decreases toward 0 with each stimulus encounter, 329 

modeling the possibility that forgetting in WM itself might decrease with practice. 330 

This model includes 5 parameters: β, ε and pers as defined above, the initial 331 

value of decay decay0, and ξ the decay factor. 332 

- The WMdi model adds an interference mechanism to WMd, such that the decay 333 

factor of a given stimulus additionally increases with every encounter of a 334 

different stimulus. This adds one parameter to the previous model. 335 

- The RLi model is identical to the basic RL model, with an added interference 336 

mechanism: on each trial, the Q-value of non-observed stimuli with the chosen 337 

action is updated in the same way as the observed stimuli, but with a fraction of 338 

the learning rate αi. This captures the possibility that credit is assigned to the 339 

wrong stimulus, modeling the possibility that WM-like effects might reflect 340 

interference within a pure RL system. This model includes 6 parameters. 341 

 342 

Model Comparison: We used the Akaike Information Criterion to penalize model 343 

complexity - AIC (Burnham & Anderson 2002). Indeed, we previously showed that in the 344 

case of the RLWM model and its variants, AIC was a better approximation than 345 

Bayesian Information Criterion (BIC; Schwarz 1978) at recovering the true model from 346 
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generative simulations (Collins & Frank 2012). Comparing RLWM, RL6 and RL-only 347 

showed that models RL6 and RL-only were strongly non-favored, with probability 0 over 348 

the whole group. Other single process models were also unable to capture behavior 349 

better than RLWM (Fig. 3 E). 350 

 351 

Model Simulation: Model selection alone is insufficient to assess whether the best 352 

fitting model sufficiently captures the data. To test whether models capture the key 353 

features of the behavior (e.g., learning curves), we simulated each model with fit 354 

parameters for each subject, with 100 repetitions per subject then averaged to represent 355 

this subject’s contribution. In order to account for initial biases, we assume that the 356 

model’s choice at first encounter of a stimulus is identical to the subjects, while all further 357 

choices are randomly selected from the model’s learned values and policies. 358 

 359 

fMRI	  recording	  and	  preprocessing:	  360 

Whole-brain imaging was performed on a Siemens 3T TIM Trio MRI system equipped 361 

with a 32-channel head coil. A high-resolution T1-weighted 3D multi-echo MPRAGE 362 

image was collected from each participant for anatomical visualization. Functional 363 

images were acquired in one run of 1,920 volume acquisitions using a gradient-echo, 364 

echo planar pulse sequence (TR 2 s, TE 28 ms, flip angle 90, 40 interleaved axial slices, 365 

192 mm field of view with 3x3x3 mm voxel size). Stimuli were presented on a BOLD 366 

screen display device (http://www.crsltd.com/tools-for-functional-imaging/mr-safe-367 

displays/boldscreen-24-lcd-for-fmri/) located behind the scanner and made visible to the 368 

participant via an angled mirror attached to the head coil. Padding around the head was 369 

used to restrict head motion. Participants made their responses using an MRI-370 

compatible button box. 371 

Functional images were preprocessed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Before 372 

preprocessing, data were inspected for artifacts and excessive variance in global signal 373 

(functions: tsdiffana, art_global, art_movie). Functional data were corrected for 374 

differences in slice acquisition timing by resampling slices to match the first slice. Next, 375 

functional data were realigned (corrected for motion) using B-spline interpolation and 376 

referenced to the mean functional image. Functional and structural images were 377 

normalized to Montreal Neurological Institute (MNI) stereotaxic space using affine 378 

regularization followed by a nonlinear transformation based on a cosine basis set, and 379 
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then resampled into 2x2x2 mm voxels using trilinear interpolation. Lastly, images were 380 

spatially smoothed with an 8 mm full-width at half-maximum isotropic Gaussian kernel. 381 

GLMs:	  382 

A temporal high-pass filter of 400 seconds (.0025 Hz) was applied to our functional data 383 

in order to remove noise but preserve power from low-frequency regressors. Changes in 384 

MR signal were modeled using a general linear model (GLM) approach. Our GLM 385 

included six onsets regressors, one for correct trials corresponding to each set size (1-386 

6). Each onset was coded as a boxcar of 2 seconds in length that encompasses 387 

stimulus presentation, response, and feedback. Each onset regressor was modulated by 388 

a Prediction Error parametric regressor. We modeled Error trials, No Response trials, 389 

and instructions (1 instruction screen at the beginning of each block, 18 total and each 390 

10 seconds in length) as separate regressors. Note that error trials across all set sizes 391 

were binned into one regressor due to the low number of error trials in low set sizes. 392 

Finally, we included nuisance regressors for the six motion parameters (x, y, z, pitch, 393 

roll, yaw) and a linear drift over the course of the run.  SPM-generated regressors were 394 

created by convolving onset boxcars and parametric functions with the canonical 395 

hemodynamic response (HRF) function and the temporal derivative of the HRF. Beta 396 

weights for each regressor were estimated in a first-level, subject-specific fixed-effects 397 

model. For group analysis, the subject-specific beta estimates were analyzed with 398 

subject treated as a random effect. At each voxel, a one-sample t-test against a contrast 399 

value of zero gave us our estimate of statistical reliability. For whole brain analysis, we 400 

corrected for multiple comparison using cluster correction, with a cluster forming 401 

threshold of p<.001 and an extent threshold calculated with SPM to set a family-wise 402 

error cluster level corrected threshold of p < .05 (127 for PE>fixation; 267 for PE*set size 403 

interaction). Note that these appropriately high cluster forming threshold ensures that 404 

parametric assumptions are valid and the rate of false positives are appropriate (Eklund 405 

et al. 2016; Flandin & Friston 2016). 406 

ROIs:	  407 

Fronto-parietal network: As we did not have specific regional predictions regarding the 408 

WM component of learning, we defined broad fronto-parietal networks as ROIs that have 409 

been previously associated with a wide range of tasks involving cognitive control. 410 

Specifically, our first control network ROIs were defined by using left and right anterior 411 
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dorsal premotor cortex (prePMd: 8mm sphere around -38 10 34, (Badre & D’Esposito 412 

2007) as seeds in two separate “resting state” (task-free) seed-to-voxel correlation 413 

analyes in the CONN toolbox (https://www.nitrc.org/projects/conn/), and using the 414 

corresponding whole-brain connectivity to left and right prePMd, as our control network 415 

ROI. In order to confirm the robustness of our findings, we then ran a larger 416 

frontoparietal network ROI defined from a functionally neutral group (Yeo et al. 2011), 417 

along with a functionally defined ROI of the multiple demands network from (Fedorenko 418 

et al. 2013). All three of these frontoparietal ROIs yielded similar outcomes, thus 419 

confirming the robustness of our findings. We report here the results from the Yeo et al 420 

ROI as the widest, most neutral ROI. 421 

 422 
The striatum ROI was defined based on univariate activity for prediction error (p < .001, 423 

uncorrected), masked by AAL definitions for putamen, caudate, and nucleus accumbens 424 

(Marsbar AAL structural ROIs: http://marsbar.sourceforge.net/download.html). We note 425 

that this ROI definition would be biased for assessing the effect of RPE in the striatum. 426 

However, this is not our goal as the relationship of RPE and striatum is established both 427 

in general from the prior literature, and in this study based on the corrected whole brain 428 

analysis (see Results). Rather, this ROI will be used to test the effects of set size and 429 

the interaction of set size with RPE, within regions maximally sensitive to RPE. As the 430 

set size variable is uncorrelated with that of RPE, this ROI definition does not bias either 431 

of these analyses.  432 

 433 

For each ROI, a mean time course was extracted using the MarsBar toolbox 434 

(http://marsbar.sourceforge.net/). The GLM design was estimated against this mean time 435 

series, yielding parameter estimates (beta weights) for the entire ROI for each regressor 436 

in the design matrix. 437 

 438 

Whole brain Contrasts: We focus on two main contrasts: 1) positive effect of RPE; 2) 439 

positive interaction of RPE and set size, to determine whether WM processes influence 440 

RPE signaling and whether such interactions relate to behavior. The first contrast is 441 

defined by considering the sum of the beta weights across all set sizes: Σi=1:6 βPE(i); we 442 

test whether this contrast value is significantly positive. The second contrast takes the 443 

linear contrast of the beta weights across set sizes by the set size: Σi=1:6 (i-3.5)*βPE(i) ; 444 

testing whether this contrast is positive signals a linear increase of RPE with set size. 445 



 15 

We also tested the opposite contrasts, as well as the linear effect of set size Σi=1:6 (i-446 

3.5)*βi 447 

 448 
 449 

Interaction between set-size and RPE: To investigate individual differences in the 450 

interaction between set size and RPE, we assessed ROI markers of this interaction. We 451 

computed this in one of three ways, each reflecting different assumptions: (A) a linear 452 

contrast of set-size on RPE regression weight; (B) a contrast of high set size (4-6) vs. 453 

low set size (1-3) on RPE regression weights (in case of a step function for e.g. above 454 

vs. below capacity sets), and (C) Spearman rho of RPE weights across set-sizes, which 455 

does not require linearity and is less susceptible to outliers than linear regression. 456 

Despite slightly different assumptions, all three measures are highly correlated (all 457 

rhos>0.8,p<10-4) and yielded qualitatively similar results. Because we observe that 458 

results neither show linear changes across set sizes, nor a step function, we report 459 

results using the measure defined as option C. 460 

Results:	  461 

Behavior:	  462 

 463 
Figure 2: Behavioral Results. A) Proportion of correct choices as a function of how many times 464 
a specific stimulus was encountered (i.e., learning curves), for each set size. B) Logistic 465 
regression on factors that contribute to accuracy for a given image, including set size (NS), delay 466 
since last previous correct choice for a given image (D), PCor (number of previous correct 467 
choices for that image), and their interactions. C) Illustration of the interaction between delay and 468 
set size. D) Illustration of the interaction between set size and PCor – early indicates PCor<4, late 469 
indicate PCor>6. Error bars indicate standard error of the mean. 470 
 471 
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Behavioral results replicate our previous findings (Collins & Frank 2012; Collins et al. 472 

2014; Figure 2). Learning curves showed strong differences as a function of set size, 473 

despite the same number of encounters for each stimulus. Logistic regression analysis 474 

of subjects choices (Fig. 2B) showed main effects of reward history, delay and load, 475 

indicating that subjects were more likely to select the correct action with more previous 476 

correct experience for a given stimulus (t(25)=6.8, p<10-4), and less likely to be correct 477 

with increasing set size (t(25)=-3.4, p=.002) and increasing delay (intervening trials since 478 

their last correct choice on this stimulus) (t(25)=-3.2, p=.004). There were also 479 

interactions between all pairs of factors, such that the delay effect was stronger in high 480 

load (t(25)=-4.4,p=.0002, Fig. 2C), and the effects of load and delay both decreased with 481 

more correct reward history (ts>2.1, ps<.05, Fig. 2D). The latter interaction is expected 482 

given the RLWM model’s prediction that behavior transitions from WM (which is more 483 

sensitive to delay and load) to RL as a function of learned reliability. 484 

Model	  fitting:	  485 

Model fitting also confirmed our previous findings, showing that a computational model 486 

including two modules (RL and WM) explained subjects’ behavior better than variants of 487 

a model assuming a single RL or WM process. Specifically, RLWM provided a 488 

significantly better AIC than RL6 (t(25)=3.9, p=0.001) and RL (t(25)=-6.6,p<10-4), and 489 

individual AICs favored RLWM for a significant number of subjects (21/26 for RL6, sign 490 

test p=0.002; 23/26 for RL, p<10-4). Model simulations show that a simple RL model 491 

cannot capture the behavior as well as RLWM or RL6, but note that RL6 needs too 492 

many parameters to appropriately capture behavior. Pure working memory models 493 

assuming changes in decay with experience, or interference, also cannot capture 494 

behavior as well as our hybrid RLWM model (Fig. 3E) 495 
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 496 
Figure 3: Model Validation. A-C) Proportion of correct responses as a function of how many 497 
times a specific stimulus was encountered, for each set size, for simulation of different models 498 
with individually fit parameters. Models were simulated 100 times per subject then averaged 499 
within subjects to represent this subject’s contribution. Error bars indicate standard error of the 500 
mean across subjects. A) simple RL model including decay and different sensitivity to 501 
gains/losses. B) Identical model to A, with learning rate varying per set size. C) Model 502 
incorporating both RL and WM. D) Model comparisons show a significantly lower AIC for RLWM 503 
than RL6 or RL, for a significant number of subjects. Each cross indicates a single subject. E) 504 
Model comparison to other potential models show best fit for RLWM (see methods for other 505 
model names).  506 
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Imaging	  results:	  	  507 

 508 
Figure 4: Whole brain effects of RPE and RPExns. A-B) Regions positively correlated with 509 
RPE (p<.05 cluster corrected). C) Regions showing a positive interaction of RPE with set size. 510 
 511 
Whole brain analysis showed increasing activity with set size in bilateral precuneus and 512 

decreasing activity in a network including bilateral superior frontal gyrus, bilateral angular 513 

gyrus and bilateral supramarginal gyrus (table 3), confirming that the set size 514 

manipulation is effective at differentially engaging large brain networks.  515 

 516 

Whole brain analysis showed a distributed network that positively correlated with the 517 

parametric reward prediction errors (RPE) regressor. We verified RPE-related activation 518 

in the right caudate nucleus and thalamus (See table 1 for full results, figure 4B), as 519 

expected from the literature. Notably, the RPE network also includes regions of bilateral 520 

prefrontal and parietal cortex commonly observed in cognitive control tasks.  521 
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We next tested whether the RPE signal was homogeneous across set sizes in striatum, 523 

as implicitly expected if striatal RL is independent of WM. To the contrary. we found a 524 

significant positive interaction of set size with RPE (t(20)=2.4, p=0.026; figure 5B) in the 525 

striatal ROI (see Methods). Note that this interaction reflects a stronger effect of RPE on 526 

the striatal BOLD signal at higher set-sizes (i.e., under more cognitive load). This finding 527 

supports the hypothesis that WM interacts with RL, showing blunted RL signals in low 528 

set sizes (i.e., within the capacity of WM).  529 

 530 

Next, we investigated whether other brain regions showed the same modulation of RPE 531 

signaling by WM load. Whole brain analysis showed a positive linear interaction of set 532 

size with RPE in left lateral prefrontal cortex and parietal cortex (MNI coordinates -38, 533 

20, 28; table 2). Further investigation within an independent fronto-parietal network ROI 534 

(Yeo et al. 2011) showed both a strong main effect of prediction error (t(20)=6.9,p<10-4) 535 

and a significant interaction of set-size with RPE in the fronto-parietal ROI 536 

(t(20)=2.3,p=0.03), a pattern similar to the striatum ROI. Again, RPE signaling was larger 537 

with more WM load, possibly reflective of a common neuromodulatory signal in striatum 538 

and cortex influenced by cognitive demands. 539 

 540 
Figure 5: Striatum and Fronto-541 
parietal ROIs show increased 542 
RPE effects in higher set sizes. 543 
Average beta coefficient for RPE 544 
regressor per set size for A) Striatal 545 
ROI and B) Fronto-parietal Network 546 
ROI defined by Yeo et al. Error bars 547 
indicate standard error of the mean. 548 
 549 
 550 
 551 
 552 

Link	  to	  behavior:	  	  553 

We hypothesized that the weaker RPE signals observed in low set-sizes might reflect an 554 

interaction between WM and RL systems. Specifically, this may reflect the greater use of 555 

WM, instead of RL, at low set sizes. This strategy could be because low set sizes do not 556 

require RPE signaling: the most recent stimulus-action-outcome can be accessed from 557 

memory. Thus, we predicted that those subjects relying more on WM would exhibit a 558 

stronger neural interaction effect (i.e., they would show less homogeneity in their RPE 559 

signals across set-sizes).  To index WM contributions to choice, we use the 560 
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computational model-inferred weight of the WM module, averaged over all trials. Indeed, 561 

we found that greater WM contributions to choices was significantly related to the set-562 

size effect on RPE signaling, both in striatum (rho=0.55, p=.01), and the fronto-parietal 563 

ROI (rho=0.49; p=0.02; figure 6 left). Moreover, subjects who continued to rely on WM 564 

with experience (i.e., exhibiting less transition to RL) also showed greater set-size 565 

effects on RPE signaling in FP (rho=-0.46, p=0.03) and marginally, in striatum (rho=-566 

0.41; p=0.06; figure 6 middle). This may be due to the fact that for participants with 567 

higher overall reliance on WM, the WM module is more reliable, and thus WM use 568 

decreases less over learning. Indeed, the two indexes were negatively correlated (rho=-569 

0.69, p<10-3). The results were partly accounted for by differences in model fit capacity 570 

parameter: subjects with higher capacity showed significantly stronger nsxRPE 571 

interaction in FP (rho=0.46, p=0.03), and marginally so in striatum (rho=.41, p=0.06;). 572 

Finally, we confirmed this effect was independent of the fit of the RLWM model by using 573 

the logistic regression, and specifically the effect of set-size on accuracy (note that this 574 

measure was, as expected, related to the one obtained by the computational model: 575 

Spearman rho=-.42, p=0.05). Indeed, the effect of set-size on accuracy was marginally 576 

related to the set-size by RPE interaction in striatum (rho=-0.4,p=0.06, figure 6 right) and 577 

FP (rho=-0.41,p=0.06). Again, neural interactions were stronger for those subjects 578 

exhibiting a stronger negative effect of set-size on behavior.  579 
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Figure 6: Effect of set size on RPE in the fMRI signal is related to individual differences in 581 
behavior. Left: average model-inferred mixture weight assigned to working memory over RL 582 
(“Model mean WM weight”) is significantly related to a stronger effect of set size in fronto-parietal 583 
ROI (ρ=0.49, p=0.02) and in the striatum (ρ=0.55, p=0.01). Middle: decrease in working memory 584 
weight from early (first 3 iterations) to late in a learning block (last 3 iterations) is significantly 585 
related to fMRI effect in FP ROI (ρ=-0.46, p=0.03), and marginally so in striatum (ρ=-0.41, 586 
p=0.06). Right: the behavioral set-size effect is measured as the logistic regression weight of the 587 
set-size predictor; stronger behavioral effect is marginally related to a stronger neural effect in FP 588 
ROI (ρ=-0.41, p=0.059) and in striatum ROI (ρ=0.4, p=0.063).	  589 

Discussion:	  590 

We combined computational modeling and fMRI to investigate the contributions of two 591 

distinct processes to human learning: reinforcement learning and working memory. We 592 

replicated our previous results (Collins & Frank 2012; Collins et al. 2014) showing that 593 

these jointly play a role in decisions: computational models assuming a single learning 594 

process (either WM or RL) could not capture behavior adequately. We also replicated 595 

the widespread observation that the striatum and lateral prefrontal cortex are sensitive to 596 

reward prediction errors, a marker of RL.We made the novel observation that RL and 597 

WM are not independent processes, with the most commonly studied RL signal blunted 598 

under low WM load. Further, we found that the degree of interaction was related to 599 

individual differences in subjects’ use of WM: the more robustly subjects used WM for 600 

learning, the more they showed WM effects on RL signals.  601 

 602 

The process of model-free reinforcement learning, as both a class of machine learning 603 

algorithms and as the neural network function implemented via dopamine-dependent 604 

plasticity in cortico-basal ganglia networks, is characterized by integration of rewards 605 

over time to estimate the value of different options, and a value dependent policy. Our 606 

behavioral results replicate our previous work showing that even in simple instrumental 607 

learning, we cannot account for human learning based only on the integrated history of 608 

reward. Instead, the influences of load and delay/intervening trials show that working 609 

memory also contributes to learning. That this influence decreases with experience 610 

supports a model where RL and WM modules are dynamically weighted according to 611 

their success in predicting observed outcomes. 612 

 613 

We used computational modeling to disentangle the contributions of RL and WM to 614 

learning and to assess neural indicators of their interactions. We extracted the reward 615 

prediction error signal from the RL module, and confirmed in a model-based whole brain 616 
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fMRI analysis that striatum was sensitive to prediction errors, as established from a large 617 

literature (Pessiglione et al. 2006; Schönberg et al. 2007), as was a large bilateral fronto-618 

parietal region (Daw et al. 2011). However, we found in both regions that sensitivity to 619 

RPE was modulated by set size, the number of items that subjects learned about in a 620 

given block. Specifically, the RPE signal was weaker in lower set sizes, in which 621 

subjects’ learning was closest to optimal, and thus likely to mostly use WM. Thus, as 622 

noted in our earlier studies (Collins & Frank 2012; Collins et al. 2014), WM contributions 623 

to learning can confound measures typically attributed to RL. While the previous findings 624 

were limited to behavioral, genetic and computational model parameters, here we report 625 

for the first time that even neural RPE signals are influenced by WM. These results also 626 

imply that in other studies that do not manipulate WM load during learning, the 627 

contribution of WM to learning may yield inflated or blunted estimates of the pure RL 628 

process.  629 

 630 

We further found that individual differences in the degree to which set-size modulated 631 

RPE signals correlated with the degree to which subjects relied on WM in their 632 

behavioral learning curves. Specifically, subjects with more robust use of WM showed 633 

more reliably blunted RPE signals in lower set sizes, supporting the interpretation that 634 

WM use induces weaker RPEs in the RL system. Further supporting this interpretation, 635 

we observed that subjects who continued to use WM with learning (i.e., showing less 636 

transition to RL) exhibited larger effects of set-size on RPE signaling.   637 

 638 

One might expect to observe more reliable indicators of neural computations with easier 639 

tasks; our findings show the opposite. These results thus strongly hint at a mechanism 640 

by which WM and RL interact beyond the competition for control of action (Poldrack et 641 

al. 2001), and specifically at a mechanism by which WM interferes with RL 642 

computations. How might this interference occur? One possibility is that the two 643 

processes compete not only for guiding action, but also more generally, for example 644 

based on their reliability in a given environment. Such interference would mean that in 645 

conditions in which WM performs better that RL (eg. early in learning for low set sizes), 646 

WM inhibits the whole RL mechanism and thus weakens its characteristic neural signals, 647 

such as RPEs. Another possible explanation for the observed interference is cooperative 648 

interaction, where WM modifies the reward expectations in the RL system. This would 649 

lead – when WM was working well – to higher expectations than would be computed by 650 
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pure RL, and thus to weaker RPEs. Future research will need to distinguish these 651 

possibilities. There may be other interpretations of the change in RPE signaling with set 652 

size, besides our interpretation as an interaction between the RL and WM processes. 653 

However, given that behavioral fits strongly implicate separate WM and RL processes in 654 

learning (see above and previous studies), and that WM is sensitive to load in other 655 

paradigms with similar profiles, this remains the most parsimonious explanation. Note 656 

that this interaction also makes other behavioral predictions suggesting that 657 

reinforcement value learning is actually enhanced under high WM load; we have recently 658 

confirmed this prediction using a novel task building on this line of work (Collins et al, 659 

submitted). 660 

 661 

Our results are related to recent work on sequential decision making and learning that 662 

highlighted the role of a model-free module (similar to our RL model), and of a model-663 

based module, responsible for representing stimulus-action-outcome transitions and 664 

using them to plan decisions (Doll et al. 2015). This latter module has been linked to 665 

cognitive control and is weakened under load (Otto et al. 2013), suggesting that it may 666 

require WM. Moreover, both WM use in the current task and model-based processing in 667 

the sequential task are related to the same genetic variant associated with prefrontal 668 

catecholaminergic function (Collins & Frank 2012; Doll et al. 2016). Notably, (Daw et al. 669 

2011) showed that RPEs in the striatum were modulated by model-based values, a 670 

result that may support our collaborative hypothesis. However, we demonstrate such 671 

interaction even in paradigms that are traditionally thought to involve purely “model-free” 672 

RL. As there is no sequential dependence between trials, learning in our paradigm does 673 

not require learning a transition model or planning. Indeed, we could adequately capture 674 

learning curves for individual set-sizes using a purely model-free RL model (Collins & 675 

Frank 2012; Collins et al. 2014), with decreasing learning rates across set sizes, but this 676 

model has more parameters than RLWM and cannot capture the nuanced effects of e.g., 677 

delay and set-size interactions. Thus, our results show that learning in very simple 678 

environments that appear to require purely model-free learning still recruits executive 679 

functions, with working memory contributing to learning and interfering with the putative 680 

dopaminergic RL process. Our results show a similar pattern of RPE activations for 681 

subcortical and lateral prefrontal cortex areas, a common finding in published studies 682 

(e.g. Badre & Frank 2012; Frank & Badre 2012), possibly reflecting a common 683 

dopaminergic input to both regions (Bjorklund & Dunnett 2007).    684 
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 685 

We investigated the role of working memory using set-size as a proxy. However, this 686 

leaves open some questions and may limit some of our interpretations. In particular, set-687 

size affects the overall load of working memory, but is also predictive of higher delays 688 

between repetitions of the same stimulus. While our analyses tease apart load from 689 

delay, the delay itself comprises both a temporal component (number of seconds over 690 

which working memory could decay passively), and a discrete component (number of 691 

intervening trials that may interfere with working memory). Our paradigm did not 692 

manipulate those two factors to make them maximally decorrelated, and cannot 693 

distinguish their relative contributions to the effect of delay on behavior. Furthermore, by 694 

focusing on set size as the marker of WM, we cannot distinguish between a “tonic”, or 695 

slowly tuned interference of WM in RL computation, vs. a more “phasic”, trial-by-trial 696 

adjustment of their role and interaction between them. A target for future research is 697 

increasing the experimental paradigm’s capacity to carefully disentangle delay from load, 698 

allowing us to better understand the dynamics of interactions between RL and WM. 699 

 700 

We focused on WM as an alternative learning mechanism from RL, with an a priori 701 

interest in regions of the cognitive control network in lateral frontal and parietal cortices. 702 

However, regions involved in long-term memory (LTM), such as medial temporal lobe 703 

(MTL) and hippocampus, could also play an important role: rote memorization of explicit 704 

rules is in the prime domain of LTM, others have shown trade-offs for learning between 705 

LTM and striatal based learning (Poldrack et al. 2001), and WM itself is often difficult to 706 

distinguish from LTM (Ranganath & Blumenfeld 2005; D’Esposito & Postle 2015). Our 707 

results are consistent with LTM having a role in learning: indeed, we observe a negative 708 

correlation between RPE and activation in a network of regions including MTL (table 2), 709 

indicating higher activation early in learning (Poldrack et al. 2001). However, 710 

computational modeling shows that the second learning component we extract is 711 

capacity limited, supporting our interpretation of this component as mainly WM. 712 

Nevertheless, future research is needed to more carefully dissociate the role of WM from 713 

LTM in reinforcement learning. 714 

 715 

Learning is a key factor in humans improving their abilities, skills, and fitting to our 716 

quickly changing environments. Understanding what distinct cognitive and neurological 717 

components contribute to learning is thus essential, in particular to study differences in 718 
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learning across individuals. Many neurological and psychiatric disorders include learning 719 

impairments (Huys et al. 2016). To precisely understand how learning is affected by 720 

these conditions, we must be able to reliably extract separable cognitive factors, 721 

understand how these factors interact, and link them to their underlying neural 722 

mechanisms. Our results provide a first step toward clarifying how we trade off working 723 

memory and integrative value learning to make decisions in simple learning 724 

environments, and how these processes may interfere with each other.   725 
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Figure Legends 801 
 802 
Figure 1: Experimental Protocol. At the beginning of each block, subjects were shown for 10 s 803 
the set of stimuli they would see in that block. In this example, Block 1 uses color patches for 804 
stimuli and has a set size ns =2; Block n uses shapes and has ns =6. Each trial included the 805 
presentation of a stimulus for 0.5s followed by a blue fixation cross until subject pressed one of 806 
three buttons, or up to 1.5s after trial onset. Button press caused the fixation cross to turn white. 807 
Feedback was presented for 1s, and came 1.5s after trial onset. Feedback consisted of the words 808 
correct or incorrect in green and red, respectively. The inter-trial interval consisted of a white 809 
fixation cross with jittered duration to allow trial by trial event-related analysis of fMRI signal. 810 
Blocks set sizes varied between 1 and 6, and the order was randomized across subjects. 811 

 812 

Figure 2: Behavioral Results. A) Proportion of correct choices as a function of how many times 813 
a specific stimulus was encountered (i.e., learning curves), for each set size. B) Logistic 814 
regression on factors that contribute to accuracy for a given image, including set size (NS), delay 815 
since last previous correct choice for a given image (D), PCor (number of previous correct 816 
choices for that image), and their interactions. C) Illustration of the interaction between delay and 817 
set size. D) Illustration of the interaction between set size and PCor – early indicates PCor<4, late 818 
indicate PCor>6. Error bars indicate standard error of the mean. 819 

 820 

Figure 3: Model Validation. A-C) Proportion of correct responses as a function of how many 821 
times a specific stimulus was encountered, for each set size, for simulation of different models 822 
with individually fit parameters. Models were simulated a 100 times per subject then averaged 823 
within subjects to represent this subject’s contribution. Error bars indicate standard error of the 824 
mean across subjects. A) simple RL model including decay and different sensitivity to 825 
gains/losses. B) Identical model to A, with learning rate varying per set size. C) Model 826 
incorporating both RL and WM. D) Model comparisons show a significantly lower AIC for RLWM 827 
than RL6 or RL, for a significant number of subjects. Each cross indicates a single subject. E) 828 
Model comparison to other potential models show best fit for RLWM (see methods for other 829 
model names).  830 
 831 
Figure 4: Whole brain effects of RPE and RPExns. A-B) Regions positively correlated with 832 
RPE (p<.05 cluster corrected). C) Regions showing a positive interaction of RPE with set size. 833 

 834 



 29 

Figure 5: Striatum and Fronto-parietal ROIs show increased RPE effects in higher set 835 
sizes. Average beta coefficient for RPE regressor per set size for A) Striatal ROI and B) Fronto-836 
parietal Network ROI defined by Yeo et al. Error bars indicate standard error of the mean. 837 

 838 

Figure 6: Effect of set size on RPE in the fMRI signal is related to individual differences in 839 
behavior: Effect of set size on RPE in the fMRI signal is related to individual differences in 840 
behavior. Left: average model-inferred mixture weight assigned to working memory over RL 841 
(“Model mean WM weight”) is significantly related to a stronger effect of set size in fronto-parietal 842 
ROI (r=0.49, p=0.02) and in the striatum (r=0.55, p=0.01). Middle: decrease in working memory 843 
weight from early (first 3 iterations) to late in a learning block (last 3 iterations) is significantly 844 
related to fMRI effect in FP ROI (r=-0.46, p=0.03), and marginally so in striatum (r=-0.41, p=0.06). 845 
Right: the behavioral set-size effect is measured as the logistic regression weight of the set-size 846 
predictor; stronger behavioral effect is marginally related to a stronger neural effect in FP ROI (r=-847 
0.41, p=0.059) and in striatum ROI (r=0.4, p=0.063).  848 
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fMRI activations from Prediction Error contrasts 849 
 850 

Table 1: Main effect of RPE 851 

All	  clusters	  reliable	  at	  p	  <	  .05	  corrected.	  Coordinates	  are	  the	  center	  of	  mass	  in	  MNI.	  852 

A)	  Contrast:	  Main	  Effect	  of	  RPE	  >	  Fixation	  853 

Region	   BA	   Extent	  (voxels)	   x	   y	   z	   Peak	  t-‐val	  

Right	  Angular	  Gyrus	   7	   3202	   34	   -‐60	   42	   10.83	  

	   40	   	   46	   -‐52	   44	   9.2	  

Right	  Inferior	  Parietal	  Gyrus	   	  40	  

	  

42	   -‐42	   40	   10.21	  

Left	  Superior	  Parietal	  Gyrus	   7	   3317	   -‐30	   -‐54	   44	   10.43	  

Left	  Angular	  Gyrus	   40	  

	  

-‐46	   -‐48	   56	   10.32	  

Left	  Inferior	  Parietal	  Gyrus	   40	  

	  

-‐42	   -‐42	   42	   9.45	  

Right	  Superior	  Frontal	  Sulcus	   6	   12409	   20	   2	   62	   9.64	  

Right	  Middle	  Frontal	  Gyrus	   46	  

	  

38	   36	   30	   8.84	  

Left	  Superior	  Frontal	  Gyrus	   6	  

	  

-‐24	   -‐6	   62	   8.15	  

Left	  Middle	  Frontal	  Gyrus	   11	   1686	   -‐30	   56	   4	   7.78	  

Left	  Lateral	  Orbital	  Gyrus	   46	  

	  

-‐40	   56	   -‐2	   6.96	  

Left	  Anterior	  Orbital	  Gyrus	   11	  

	  

-‐24	   44	   -‐14	   6.42	  

Right	  Putamen	  

	  

955	   28	   22	   0	   6.99	  

Right	  Thalamus	  

	   	  

12	   -‐10	   10	   5.15	  

Right	  Pallidum	  

	   	  

12	   0	   6	   4.36	  

Right	  Precuneus	   7	   731	   6	   -‐64	   40	   6.32	  

	  

7	  

	  

8	   -‐66	   58	   5.21	  

B)	  Contrast:	  Main	  Effect	  of	  RPE	  <	  Fixation	  854 

Region	   BA	  

Extent	  

(voxels)	   x	   y	   z	   Peak	  t-‐val	  

Right	  Superior	  Occipital	  Gyrus	   18	   9715	   16	   -‐92	   24	   10.22	  

Left	  Superior	  Occipital	  Gyrus	   18	   	   -‐16	   -‐96	   18	   8.73	  

Right	  Inferior	  Lingual	  Gyrus	   30	  

	  

-‐10	   -‐48	   -‐6	   8.9	  

Left	  Cingulate	  Gyrus	  

(subgenual)	   11	   2264	   -‐4	   28	   -‐12	   8.52	  

	  

25	  

	  

-‐2	   18	   -‐8	   7.34	  
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Left	  Superior	  Frontal	  Gyrus	   10	  

	  

-‐8	   58	   2	   7.24	  

Left	  Middle	  Temporal	  Gyrus	   20	   2543	   -‐56	   -‐8	   -‐18	   6.69	  

Left	  Supramarginal	  Gyrus	   48	  

	  

-‐36	   -‐36	   22	   6.26	  

Left	  Superior	  Temporal	  Gyrus	   38	  

	  

-‐34	   8	   -‐20	   6.24	  

Right	  Precentral	  Sulcus	   4	   1248	   26	   -‐30	   66	   6.21	  

Right	  Postcentral	  Gyrus	   4	  

	  

36	   -‐26	   72	   6.13	  

Right	  Precentral	  Gyrus	   4	  

	  

52	   -‐12	   58	   5.62	  

Right	  Superior	  Temporal	  Gyrus	   38	   336	   30	   10	   -‐28	   6.08	  

Right	  Middle	  Temporal	  Gyrus	   21	  

	  

50	   2	   -‐26	   5.56	  

	  

21	  

	  

58	   0	   -‐24	   4.76	  

Right	  Cingulate	  Gyrus	   23	   516	   6	   -‐20	   44	   5.64	  

Right	  Superior	  Frontal	  Gyrus	   6	  

	  

12	   -‐18	   62	   5.03	  

Right	  Cingulate	  Sulcus	   4	  

	  

10	   -‐16	   54	   4.56	  

Right	  Superior	  Temporal	  Gyrus	   48	   935	   54	   -‐4	   4	   5.6	  

Right	  Lateral	  Fissure	   48	  

	  

50	   4	   -‐6	   5.11	  

Right	  Lateral	  Fissure/Insular	  

Gyrus	   48	  

	  

40	   -‐14	   20	   5.04	  

	  855 

	  856 

Table	  2:	  set-‐size	  *	  RPE	  interaction	  857 

Contrast:	  RPE	  Parametric	  Increasing	  With	  Set	  Size	   	  	   	  	   	  	   	  	  

Region	   BA	   Extent	  (voxels)	   x	   y	   z	   Peak	  t-‐val	  

Left	  Superior	  Precentral	  Sulcus	   44	   725	   -‐46	   10	   36	   5.69	  

Left	  Inferior	  Frontal	  Sulcus	   48	  

	  

-‐38	   20	   28	   5.16	  

Left	  Middle	  Frontal	  Gyrus	   6	  

	  

-‐32	   2	   38	   4.57	  

Right	  Superior	  Frontal	  Gyrus	   6	   689	   18	   4	   54	   5.42	  

	  

32	  

	  

6	   22	   46	   4.3	  

Left	  Superior	  Frontal	  Gyrus	   6	  

	  

-‐6	   10	   50	   4.08	  

Left	  Intraparietal	  Sulcus	   7	   463	   -‐26	   -‐66	   44	   5.28	  

	  

7	  

	  

-‐30	   -‐58	   46	   5.24	  

	  

19	  

	  

-‐26	   -‐68	   34	   4.59	  

	  858 
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	  859 

Table	  3:	  Main	  effect	  of	  set	  size	  860 

A)	  	  Contrast:	  Set	  Size	  Parametric	  Increasing	  861 

Region	   BA	   Extent	  (voxels)	   x	   y	   z	   Peak	  t-‐val	  

Left	  Precuneus	   7	   1948	   -‐6	   -‐72	   44	   6.98	  

Left	  Angular	  Gyrus	   40	  

	  

-‐32	   -‐50	   36	   6.4	  

Right	  Precuneus	   7	  

	  

12	   -‐70	   44	   5.22	  

	  862 

B)	  Contrast:	  Set	  Size	  Parametric	  Decreasing	  863 

Region	   BA	   Extent	  (voxels)	   x	   y	   z	   Peak	  t-‐val	  

Right	  Superior	  Frontal	  Gyrus	   9	   1344	   14	   58	   34	   6.64	  

Left	  Superior	  Frontal	  Gyrus	   9	  

	  

-‐12	   46	   42	   4.69	  

	  

10	  

	  

-‐4	   58	   28	   4.5	  

Left	  Supramarginal	  Gyrus	   40	   447	   -‐64	   -‐44	   34	   6.31	  

Left	  Angular	  Gyrus	   39	  

	  

-‐52	   -‐70	   28	   5.83	  

	  

40	  

	  

-‐60	   -‐52	   40	   4.52	  

Right	  Angular	  Gyrus	   40	   255	   58	   -‐52	   44	   5.41	  

	  

22	  

	  

62	   -‐54	   28	   4.41	  

Right	  Supramarginal	  Gyrus	   40	  

	  

64	   -‐46	   36	   5.19	  

Right	  Superior	  Frontal	  Gyrus	   8	   239	   14	   20	   62	   5.15	  

	  

9	  

	  

10	   38	   52	   4.42	  

Left	  Superior	  Frontal	  Sulcus	   8	   255	   -‐24	   22	   58	   4.9	  

Left	  Middle	  Frontal	  Gyrus	   46	  

	  

-‐24	   18	   40	   4	  

 864 

  865 
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 866 

A)	   K	   α	   φWM	   ρ	   φRL	   ε	   pers	  

Mean	  

(std)	  

4.08	  

(0.98)	  

0.07	  

(0.13)	  

0.29	  

(0.31)	  

0.86	  

(0.18)	  

0.05	  

(0.05)	  

0.03	  

(0.03)	  

0.34	  

(0.31)	  

Median	   4	   0.03	   0.18	   0.94	   0.05	   0.03	   0.25	  

Min	  -‐	  

max	  

2-‐5	   0.01-‐

0.5	  

0-‐1	   0.42-‐1	   0-‐0.21	   0-‐0.14	   0.02-‐1	  

 867 

 868 

B)	   K	   α	   φWM	   ρ	   φRL	   ε	  

α	   ns	   	   	   	   	   	  

φWM	   ns	   0.77	   	   	   	   	  

ρ	   ns	   -‐0.65	   -‐0.77	   	   	   	  

φRL	   ns	   0.83	   0.69	   -‐0.62	   	   	  

ε	   ns	   ns	   ns	   ns	   ns	   	  

pers	   ns	   ns	   ns	   ns	   ns	   ns	  

 869 

 870 

Table 4) RLWM model fit parameters. A)  Parameter statistics B) Correlation between 871 

parameters. ns indicates non-significant correlation (p<.05, corrected for multiple 872 

comparisons. 873 

 874 


