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Often the world is structured such that distinct sensory contexts signify the same abstract rule set.
Learning from feedback thus informs us not only about the value of stimulus-action associations but also
about which rule set applies. Hierarchical clustering models suggest that learners discover structure in
the environment, clustering distinct sensory events into a single latent rule set. Such structure enables
a learner to transfer any newly acquired information to other contexts linked to the same rule set, and
facilitates re-use of learned knowledge in novel contexts. Here, we show that humans exhibit this
transfer, generalization and clustering during learning. Trial-by-trial model-based analysis of EEG signals
revealed that subjects’ reward expectations incorporated this hierarchical structure; these structured
neural signals were predictive of behavioral transfer and clustering. These results further our understand-
ing of how humans learn and generalize flexibly by building abstract, behaviorally relevant representa-
tions of the complex, high-dimensional sensory environment.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

How do we take actions that maximize the potential to obtain
desired outcomes? Reinforcement-learning (RL) models success-
fully account for many aspects of human learning behavior and
neural activity, by defining a process mechanism that integrates
reinforcement history for well-specified stimuli and actions
(Frank & O’Reilly, 2006; Montague, Dayan, & Sejnowski, 1996).
However, in real life, stimuli are not so well defined: their features
are nearly infinite, but only a small subset of them matter for
determining how to act. While humans are adept at learning in
complex novel situations, RL models in real world settings suffer
from the curse of dimensionality. An approach to facilitate learning
in complex environments would be to simplify the representation
of the environment: for example, to recognize when different sen-
sory states actually should be considered as equivalent, because
interaction with them leads to similar outcomes. Doing so would
afford generalization and transfer, obviating the need to learn for
every single sensory state: given the same goal, any information
gathered for one situation may also serve to inform other sensorily
distinct, but behaviorally equivalent situations. This ‘‘learning to
learn” functionality requires building a state and action space that
is abstracted away from pure sensory/motor components, but
instead comprises functionally relevant states/actions over which
RL operates. Computational models of this structure learning pro-
cess predict that learners cluster together contexts that are indica-
tive of the same latent task set, and further, that such clustering
also allows them to construct best guesses of the appropriate set
of behaviors in novel contexts (Collins & Frank, 2013). Here, we
investigate how the brain constructs, clusters and generalizes
these types of structured rule abstractions in the course of
learning.

As a real-world example, consider having a laptop with one
operating system, and a desktop computer with another. Here,
the current sensory context (laptop or desktop) cues a higher-
order representation of an abstract context (Mac or Linux), which
then determines the lower-order set of rules for behavior (specific
actions to reach specific goals). The higher order context defines a
rule-set that is ‘‘latent” or not tied to a specific context: in this case
the observable context is the computer used, but the rule-set is
more abstract and can be generalized to other contexts when
appropriate, allowing for rapid learning and transfer of new
actions. Thus, you may learn that your work desktop is also associ-
ated with the ‘‘Mac” rule-set. When you learn a new shortcut on
that desktop, you can immediately assume that it will have the
same effect on your laptop (but not on your home PC) even if
you’ve never tried it before. Similarly, if you try a new computer
and the shortcuts typically used on your PC produce desired
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effects, you may infer that it has the same OS and generalize your
knowledge of that OS to other actions on that new machine. Clus-
tering models further predict that the shortcuts you try in the first
place are more likely to be the ones that have worked across a vari-
ety of machines – even if they’re not the machines (and hence
shortcuts) you’ve used most frequently.

We recently showed that humans build structure a priori – sub-
jects do not only discover structure when it exists in the task, but
apply structure to learning problems that could be described more
simply without structure and in which it is not directly beneficial
to learning (Collins & Frank, 2013). Nevertheless, EEG markers of
PFC function predicted subjects’ tendency to create structure and
later use it to generalize previously learned rules to new contexts
(Collins, Cavanagh, & Frank, 2014). Computational models cap-
tured this structured learning using Bayesian hierarchical cluster-
ing (Doshi, 2009; Teh et al., 2006) of task-set rules, which could
be approximately implemented in a hierarchical PFC-BG neural
network (Collins & Frank, 2013). However, these previous studies
were designed to test whether subjects tended to create structure
even when no such structure was needed. Here, we develop a para-
digm to assess whether subjects discover the form of structure that
maximizes their ability to generalize, and whether they do so in a
manner predicted by clustering models. In particular, these models
predict that subjects should treat a particular dimension of the
stimulus to be ‘‘higher-order” indicative of the rule-set if distinct
elements of that dimension can be clustered together, that is, if
they signify the same set of mappings between lower order stimu-
lus features and actions. We test whether subjects can indeed iden-
tify the appropriate dimension that affords generalization, and
further assess the implications of such clustering in novel contexts.
We recorded EEG to assess evidence for such hierarchical cluster-
ing in the neural signal.

Specifically, our experimental paradigm (Fig. 1) assesses
whether subjects abstract over multiple features that are perceptu-
ally distinct (e.g., different colors) but which all signify the same
rule in terms of how they condition the contingencies between
other features (e.g., shapes), actions and outcomes. Our model pre-
dicts that if one feature dimension (e.g. color) allows such cluster-
ing of lower level rules, then subjects will treat this feature as
higher-order context indicative of an abstract latent task set
(Collins & Frank, 2013), while treating the other features (shapes)
as lower level stimuli. Because this structure separates the latent
rule-set from the contexts (colors) that cue it, it endows a learner
with the ability to append any newly encountered lower order
stimulus-action associations to an existing rule-set, and thus to
immediately generalize it to all contexts indicative of the same set.

Our clustering model makes more specific predictions regarding
how subjects treat new contexts in which they are uncertain about
which existing rule-set (if any) should apply. Clustering implies not
only that contexts indicative of the same rule can be grouped
together, but also the number of such contexts in a cluster is
indicative of the popularity of that structure, and hence affects
the probability that this structure is selected in a new context
(technically, we use a non-parametric prior called the Chinese Res-
taurant Process (CRP) Teh et al., 2006; Gershman & Blei, 2012).
Note, however, that the most popular rule may not be the one that
has been experienced most often: clustering occurs as a function of
number of distinct contexts and not the number of trials (as
assumed in other clustering models (Gershman, Blei, & Niv,
2010). (In the computer example, our model predicts that one’s
expectation for the operating system of a new computer would
be based on the relative proportion of computers that had used
Mac OS in the subject’s experience, even if they had spent 95% of
the time on a single PC.) Thus in our design (Figs. 1 and 2A, B)
we equate trial frequency across different rule structures but
assess whether subjects show evidence of context popularity-
based clustering.

EEG is sensitive to reward expectations (Cavanagh, Frank, Klein,
& Allen, 2010; Fischer & Ullsperger, 2013; Holroyd & Krigolson,
2007; Holroyd, Pakzad-Vaezi, & Krigolson, 2008; Sambrook &
Goslin, 2015; Walsh & Anderson, 2012). We use trial-by-trial
model-based analysis (Cavanagh, 2015; Harris, Adolphs, Camerer,
& Rangel, 2011; Larsen & O’Doherty, 2014) to investigate whether
EEG signals are better accounted for by information processing that
includes structure-learning, and whether these signals are predic-
tive of generalization and clustering.
2. Material and methods

2.1. Subjects

2.1.1. Behavioral experiment
34 subjects participated (20 female, ages 18–30), and one was

excluded for outlier low performance. Analyses were performed
on 33 subjects, including 18 in the TS1 as old TS in phase C group,
and 15 in the TS2 group.

2.1.2. EEG experiment
We collected data for 39 subjects (26 female, ages 18–30). 7

subjects were excluded for poor participation (more than 50 no
response trials) and a further 3 for poor performance (3 standard
deviations under overall group mean performance), so that behav-
ioral analysis was performed on 29 subjects. Due to technical prob-
lems with the EEG cap, 3 additional subjects were excluded from
EEG analysis, leaving 26 subjects.

2.2. Experimental protocol

2.2.1. Structure
Subjects performed a learning experiment in which they used

reinforcement feedback to figure out which key to press for each
presented visual input. The experiment was divided into three
phases (see Fig. 1C). In all phases, visual input patterns comprised
a novel set of colored shapes. After stimulus presentation, subjects
selected one of 4 keys to press with their right hand. Simultaneous
visual and auditory feedback indicated truthfully whether they had
selected the correct action. See Section 2.2.3 for more details.

2.2.2. Phases
The three phases of the experiment were designed to test

whether subjects learned hierarchical structure and leveraged it
to transfer and generalize knowledge in new contexts. We describe
here the protocol in which color acts as ‘‘high level” context
(Fig. 1A), but the role of color and shape was counterbalanced
across subjects. Phase A included 6 different visual stimuli combin-
ing one of 3 colors (C0, C1 or C2) and one of two shapes (S1 or S2)
(Figs. 1C and 2A, B). We selected colored-shape action associations
such that they were identical for C0 and C1 but different for C2. As
shown in Fig. 2A, this provides an opportunity for structuring
learning such that C0 and C1 can be clustered on a single task-
set. Phase B included another 6 different visual stimuli combining
one of the same 3 colors (C0, C1 or C2) with one of two new shapes
(S3 or S4), Figs. 1 and 2A, B. The associations to be learned in this
transfer phase B respected the previous grouping of C0 and C1 into
a single task-set (Fig. 2A), such that even though subjects still
needed to learn de novo the correct actions for the new shapes,
we could test whether they could use the structure acquired in
phase A to more rapidly learn these associations that are shared
between C0 and C1 by generalizing learning from one to the other.
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Fig. 1. Experimental protocol: (A) Single trial structure for the behavioral experiment. (B) Single trial structure for the EEG experiment. (C) The table indicates correct
(rewarded) action (A) contingencies for each context-stimulus (C-S) pair in initial phase A, and transfer phases B and C. ‘‘TS” indicates a task-set of stimulus-action
contingencies that can be selected in a given context. If subjects learn that C0 and C1 cue the same TS1 in phase A, then they should more easily acquire new S-A associations
that are shared across those contexts in phase B. In phase C, TSold indicates that the valid TS in new context C3 corresponds to one of the previously learned TS1 or TS2,
whereas TSnew denotes that a new set of S-A associations needs to be learned for context C4.

Fig. 2. Initial learning phase A and transfer phase B. (A) Hierarchically-structured representation of phase A (light arrows) and new S-A associations to be learned in phase B
(bold arrows). Subjects can learn in phase A to cluster C0 and C1 together to indicate the same abstract latent rule TS1. They can also expand the content of that TS (shared
across contexts) in phase B to append new S-A mappings to it. (B) Example of stimuli presented in initial phase A and transfer phase B of the experiments. Note that red and
grey shapes are half as frequent as yellow shapes, such that TS1 and TS2 are both equally frequent. (C and D) Learning curves for initial phase A and transfer phase B, plotting
the proportion of correct trials as a function of number of encounters of a given colored-shape, averaged over CO/C1 colored shapes (purple) and C2 colored-shapes (yellow).
Within-cluster transfer is evident by faster learning of new S-A associations for C0/C1 than for C2 in phase B, despite slower initial learning in phase A.
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1 The use of this prior was motivated in our previous modeling work in structure
learning, but its specific predictions were only tested insofar as they related to
transfer vs. new task-set creation. Here we test more directly more specific aspects of
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Phase C added novel contexts (colors C3 or C4) with one of two old
shapes (S3 or S4) (Figs. 1 and 3 top). Subjects could learn to re-use
one of the previously learned task-sets (TS1 or TS2) for one context
C3, but would need to create a new TS for C4. This transfer phase C
thus allowed us to test whether, and how well, subjects could
transfer a learned rule to a new context.

In phase A and B, the sequence of visual input patterns was
pseudo randomized such that C0-Si, and C1-Si appeared half as
frequently as C2-Si (Fig. 2B). This allowed us to ensure that the
two task-sets (TS1 and TS2) were equally frequent and that any
benefit of context popularity could not be explained by overall TS
frequency. In phase C, all input patterns were equally frequent.
The correct action for a given shape was always identical for C0
and C1, and different from C2 (see Figs. 1 and 2A). Phase A and B
included at least 40 and at most 120 trials or up to a criterion of
4 out of 5 last trials correct for each stimulus, followed by 60
additional asymptotic trials. Phase C included 80 trials.

2.2.3. Trials
Stimuli were presented centrally on the black background screen

(approximate visual angle of 8�) for 1.5 s, duringwhich time subjects
were instructed to answer by pressing one of four keys (see Fig. 1A).
This was immediately followed by feedback presentation for 1 s:
word ‘‘correct” or ‘‘incorrect”, tone (ascending 200 ms tone for ‘‘cor-
rect” [frequencies 400–800 Hz], a descending 200 ms tone (same fre-
quencies) for incorrect, and a [100 Hz] low 200 ms tone for missed
trials) and filling/emptying of a cumulative reward bar. Failure to
answerwithin 1.5 swas indicated by a ‘‘too slow”message. Feedback
was followed by a 0.5 s fixation cross before next trial onset.

For the EEG experiment, stimulus presentation was uniformly
jittered (1.4–1.7 s), but subjects still needed to respond within
1.5 s (Fig. 1B). Feedback followed stimulus offset immediately,
but did not include ‘‘correct/incorrect” words, it only included
the tones, the cumulative reward bar, with a central fixation cross.
Next stimulus onset occurred after a uniform jitter in [0.9–1.8] s.

2.3. Computational modeling

We contrast two kinds of models by which the task could be
learned. The classic ‘‘flat” reinforcement learning (FRL) model
makes the assumption that subjects learn to estimate stimulus-
action values for each input pattern (e.g. red triangle C1S2, yellow
circle C2S1, etc.) independently. Conversely, our structure-learning
model (SRL) makes the assumption that subjects learn the latent
task state space representing the structure of the environment,
and that we perform reinforcement learning operating in this
latent space. Thus actions to be learned are not tied to individual
C or S or their conjunction, but to a latent task representation to
be learned (e.g. where C0 and C1 cue the same set of stimulus-
action associations). The latter is similar to our previously pub-
lished hierarchical learning model (Collins & Frank, 2013).

The FRL model relies on standard delta rule learning for estimat-
ing expected reward Q(Ct, St, at) for a given color (Ct), shape (St) and
action on each trial t. If the reward obtained is rt (0 or 1), the
estimate is updated by incrementing by a � d, where a is the free
learning rate parameter, and d is the prediction error:

dðtÞ ¼ r� QðCt; St; atÞ: ð1Þ
Value estimates are initialized at chance expectation Q0 = 1/4 (since
there are four responses). Action choice is presumed to proceed
from an epsilon-softmax policy such that for any action a = {1, 2,
3, 4},

PðajC; SÞ ¼ e=4þ ð1� eÞ
� expðbQðC; S; aÞÞ=

X
expðbQðC; S;aiÞÞ: ð2Þ
Here, b is the gain of the softmax logistic function such that higher
values imply more deterministic choice with greater differences in
Q values, and e reflects irreducible noise (i.e. to fit a proportion of
trials due to attentional lapses, etc.). Two additional model-free
learning mechanisms (decay, and within-dimension bleed-over)
improved fit despite added complexity, and are thus integrated in
the FRL. See Appendix for details.
2.3.1. Structure-learning model SRL
Our structure model assumes that, instead of learning to esti-

mate values of actions for the specific shapes and colors, subjects
create a latent state space that better reflects the structure of the
environments. A latent state can be thought of as a task-set: it con-
ditions the value of a shape-action-outcome association; and more
than one color can be associated to this latent task-set. We call
structure building the process of creating the space of latent vari-
ables over which learning is performed. We make the assumption
that these latent variables represent clusters of input features
(such as colors). Our model allows for building of structure using
either input dimension (which features could be clustered into
latent variables that conditioned action-outcome likelihoods):
indeed, subjects cannot know in advance which (if any) input
dimension needs to be clustered, so the model incorporates this
uncertainty. The approximate inference process can thus infer
clusters on both dimensions jointly, defining a new, more abstract
factorized state space on which to perform learning.

The cluster membership of a color is tracked probabilistically in
P(Zc|C). For a new color, this is initialized with the following prior
(Eq. (3)):

— for existing clusters Zi;PðZijCnewÞ ¼ ð1=KÞ �
X
j¼1:N

PðZijCjÞ;

where f1; . . . ;Ng are the indices of N previously
encountered contexts and K is a normalizing factor

— for a new cluster; PðZcjCnewÞ
¼ a=K ðwhere a is a concentration parameterÞ:

ð3Þ

This prior is similar to the non-parametric ‘‘Chinese-Restaurant
process” distribution (Gershman & Blei, 2012; Teh et al., 2006),1

and has the important properties that (1) the number of clusters is
unconstrained, (2) there is a parsimony bias such that the model
attempts to assign new contexts to clusters that were most popular
across multiple contexts. After an action is selected and a reward is
obtained, P(Zi|Ct) is updated via Bayes rule, with the likelihood of the
observed outcome estimated from the Q-value table:

PðZCijCtÞ  PðZCijCtÞ � PðrjZCi; ZSt; atÞX
Cj

PðZCjjCtÞ � PðrjZCj;ZSt; atÞ
" #,

: ð4Þ

In this equation, the likelihood is estimated by the Q-table Q(Zci,
Zst,.). The same process occurs independently for shapes.

At each trial, P(ZCi|Ct) and P(ZSi|St) are used to infer the most
likely cluster Zct, Zst for current color and shape Ct and St. This cor-
responds to a maximum a priori approximation for action selection,
using the prior probability; and a maximum a posteriori approxi-
mation for learning, using the posterior probability.

The model uses reinforcement learning to estimate outcomes
for different actions on the clustered input space, rather than
directly on the original sensory state-space: if this trial’s context
this prior, like popularity based clustering.



Fig. 3. Transfer to novel contexts and clustering priors. (A) Hierarchically structured representation of phase B and C. If subjects applied structure to learning in phase A/B,
they can then recognize that C3 points to one of the previously learned latent rules (either TS1 or TS2, dotted arrows) and hence generalize their learned S-A mappings. In
contrast they would need to create a new TS3 for context C4. (B) Learning curves for transfer phase C. Learning is speeded for TS that were previously valid in old contexts.
This effect is particularly evident for those subjects for whom the old TS was the more popular TS1 (clustered across two contexts; middle graph) compared to the less popular
TS2 (right). (C and D) Summary measure over first 3 trials for each condition (TSold or TSnew): mean performance (C), slope (D). (E) Action choice for first trial in phase C.
Proportion of subjects who chose the action prescribed by TS1 for that stimulus, by TS2, or either of the other two actions. There is a strong bias towards TS1, prior to any
information in the new phase, despite equal TS and action frequencies.
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C and stimulus S were inferred a priori to belong to color cluster
(Zct) and shape cluster (Zst) the model updated cluster estimates:

QðZct;Zst; atÞ  QðZct;Zst; atÞ þ g� d; ð5Þ
using prediction error d = rt � Q(Zct, Zst, at) as increment modulated
by learning rate g.

Similar to FRL, action selection was modeled using a noisy soft-
max logistic function over Q(Zct, Zst,.), where color cluster (Zct) and
shape cluster (Zst) are inferred a posteriori to be the most likely rel-
evant ones for the current color and shape.

As in FRL, we also included two mechanisms in SRL that account
for forgetting and low level biases (see details in Appendix).

We tested other models including various combinations of the
mechanisms included in FRL and SRL, but we focus on these two
models because they offered best fits within the flat and structured
RL model classes, respectively, accounting for complexity. Parame-
ter fitting was performed with constrained optimization function
from matlab (fmincon), with 25 randomly chosen starting points.
We penalized models for added parameter complexity with Akaike
Information Criterion (Akaike, 1974).

2.4. EEG

2.4.1. System
EEG was recorded from a 64-channel Synamps2 system

(0.1–100 Hz band-pass; 500 Hz sampling rate).

2.4.2. Data preprocessing/cleaning
EEG was recorded continuously with hardware filters set from

0.1 to 100 Hz, a sampling rate of 500 Hz, and an online vertex
reference. Continuous EEG was epoched around the feedback onset
(�1500 to 2500 ms). We used previously identified data cleaning
and preprocessing method (Cavanagh, Cohen, & Allen, 2009;
Collins et al., 2014) facilitated by the EEGlab toolbox (Delorme &
Makeig, 2004): data was visually inspected to identify bad chan-
nels to be interpolated and bad epochs to be rejected. Blinks were
removed using independent component analysis from EEGLab. The
electrodes were referenced to the average across channels.

2.4.3. ERPs
For event-related potentials (ERP) andmultiple regression analy-

sis, data were bandpass filtered from 0.5 to 20 Hz and down-
sampled to 250 Hz. For each subject, we performed a multiple
regression at each electrode and time point within 0–800 ms (200
time points), see Fig. 5A. Because there were many less error than
correct trials, we included only correct trials in the analysis, and
restricted it to phase A and B. Scalp voltage was z-scored before
being entered into the multiple regression analysis. There were
three regressors. The first one was the FRL model prediction error
(FPE; Eq. (1)), extracted for each subject from the model with their
fit parameters. For the second regressor, we extracted the SRLmodel
prediction error (SPE; Eq. (5)) with the same procedure; but since
SPE and FPE are strongly correlated, we orthogonalized SPE against
FPE to obtain unique variance to SPE (note that in contrast, the FPE
regressor contains both unique variance to FPE and shared variance
with SPE). Last,we includedone regressor of non-interest, indicating
which phase of the experiment (A or B), the trial is part of, so as to
control for this as a potential confound in SPE vs. FPE effects. We
analyze regressionweights for the first two regressors, bFPE and bSPE,
obtained for each subject, time-point, and electrode.



A.G.E. Collins, M.J. Frank / Cognition 152 (2016) 160–169 165
2.4.4. Statistical analysis of GLM weights
We tested the significance of bFPE against 0 across subjects for

all electrodes and time-points. To correct for multiple comparisons,
we performed cluster-mass correction by permutation testing with
custom-written matlab scripts, following the method described
(Maris & Oostenveld, 2007). Cluster formation threshold was for
a t-test significance level of p = 0.001.2 Cluster mass was computed
across space-time, and only clusters with greater mass than maxi-
mum cluster mass obtained with 95% chance permutations were
considered significant, with 1000 random permutations. We
obtained 5 positive and 4 negative clusters with a significant effect
of FPE. They spanned three time periods separated by time points
with no significant electrodes. We thus grouped the clusters based
on their time overlap into three regions of interest described in main
text (see Fig. S4B, Movie S1).

To analyze the supplementary effect of SPE, we computed the
average bSPE within each ROI (weighted by bFPE t-score; such that
a negative SPE weight in a negative FPE ROI would contribute pos-
itively, as would a positive SPE weight in a positive FPE ROI). We
obtain similar results when weighing by the sign of the t-score
only, or when looking at non-weighted averaged beta weights
within clusters. Averaged betas for the three ROIs were then tested
against 0 across subjects.
3. Results

As indicated in Section 2.2, subjects underwent three contigu-
ous learning phases, each presenting different visual input patterns
consisting of two features (colored shapes) in pseudo-randomized
order. Subjects had 1.5 s to select one of 4 actions (button presses
with their dominant hand). Feedback followed indicating whether
their choice was correct. In the initial phase (A, Fig. 2A and B), sub-
jects learned to select correct action choices for each of 6 input pat-
terns, comprising 3 colors and 2 shapes (or vice versa; the role of
color vs. shape was counterbalanced across subjects). Crucially,
two contexts (colors C0 and C1) were linked to the same rule-set
or task-set (TS1) signifying stimulus shape-action (S-A)-outcome
contingencies, while the other (C2) signified a different task set
(TS2). That is, for context C2, a different set of actions was
rewarded for the same shapes. C0 and C1 were each presented
on half as many trials as C2, such that TS1 and TS2, and each motor
action, were equally frequent across trials.
3.1. Behavioral results

3.1.1. Within-cluster transfer of newly learned rules
In phase B (Figs. 1, light grey, 2A, bold arrows), 6 new input pat-

terns corresponding to two new stimuli (in this example, shapes)
but in previously seen contexts (colors) were presented; subjects
had to learn novel arbitrary stimulus-action associations. Shape-
action to be learned associations were again identical across C0
and C1, but different for C2. If subjects had learned in phase A to
cluster together C0 and C1 into a single latent task set, then in
phase B they should be able to append novel S-A mappings in
either of these contexts to that TS structure rather than directly
to the contexts themselves. As such, our model predicts that sub-
jects transfer novel S-A mappings acquired in C0 immediately to
2 We used this conservative low threshold for two reasons: (1) it is commonly used
in cluster-based correction in fMRI data, and we could not find explicit indication of
similar information for cluster-based correction threshold in EEG studies, (2) as a
more conservative threshold, it provides more sensitivity to small clusters that are
more strongly responsive to prediction error; and allows better time-space separation
of different clusters. Use of a more liberal threshold aggregated clusters into less
temporally well-defined groups. The main results of SPE holds when analyzed with a
p = 0.05 threshold.
C1 (linked to the same TS), and vice versa, and hence learn faster
in C0/C1 than in C2. Specifically, subjects should require less
encounters of any single colored-shape to reach a given perfor-
mance level for colors C0/C1 than they would in C2 (Fig. 4B for
model predictions). Indeed, there was clear evidence for this trans-
fer (t(32) = 2.71, p = 0.01; Fig. 2D). This finding implies that sub-
jects appended new stimulus-action associations to existing
latent structures, such that they can be immediately transferred
to contexts linked to those structures.

Note, however, that this transfer requires that subjects had
already learned in phase A which contexts could be clustered
together (and indeed, which dimension should be treated as higher
order). Accordingly, there was no such transfer between C0 and C1
during phase A before this structure had been learned: indeed, per-
formance during initial early learning (first 8 iterations of C0-C1
stimuli) was significantly lower than that for C2 stimuli (t(32)
= �2.95, p = 0.006; interaction between TS and phase t(32) = 4.16,
p = 0.0002, Fig. 2C). This apparent counterintuitive finding is
accounted for by the fact that by design (see above) C0 and C1 were
presented half as often as C2, thus increasing the delay between
two successive presentations of the same visual input and allowing
for more forgetting (Collins & Frank, 2012). Once subjects discov-
ered the structure, this disadvantage was reversed, leading to
transfer in phase B despite the fact that delays between visual
inputs were still longer. Fig. 4A and B shows that our computa-
tional model can reproduce this qualitative pattern of results.
Our interpretation is supported by logistic regression analysis
showing that the probability of correct choice was significantly
impacted by delay in phase A (t = �5.03, p < 10�4; see SI). In con-
trast, we expected that once structure was learned, subjects should
abstract away the specific perception of C0 and C1 into a single
abstract TS1. Indeed, in phase B, once subjects observed the correct
outcome for a choice in either C0 or C1, they were significantly
more likely to make the same choice for the other context, as
compared to phase A (t(30) = 2.4, p = 0.02, see SI).

3.1.2. Generalization of clusters to novel contexts
The above findings show that subjects reliably clustered con-

texts indicative of the same rule-set, allowing them to append
novel stimulus-action associations to existing sets and to transfer
them across contexts that cue them. We next investigated whether
subjects could transfer these clustered rule-sets to novel contexts,
and in particular, whether they would show evidence for context
popularity-based clustering in their initial responses. In phase C
(Fig. 1, dark grey, Fig. 3A), subjects learned about four new input
patterns corresponding to two new contexts (eg. colors), one of
which (C3) corresponded to an old rule-set (either the more popu-
lar TS1 or less popular TS2), while the other (C4) corresponded to a
novel rule (TSnew). In a first behavioral experiment, subjects were
assigned to either of two groups, with C3 mapping to either TS1 or
TS2. In a second experiment, a separate group of subjects
performed the same task twice in a row, once with TS1 and once
with TS2 (with non-overlapping stimuli) while we measured
EEG. We report the behavioral experiment results that were
replicated in the EEG experiment (see Appendix).

We first confirmed previous observations (Collins & Frank, 2013;
Collins et al., 2014) that overall, subjects learned significantly faster
for novel context C3 associatedwith an old rule, than for context C4,
for which they needed to form a new set of stimulus-action associ-
ations (Fig. 3B, left, t(32) = 3.29, p = 0.002). Further, the design here
allowed us to test a novel prediction of our clustering model: that a
priori (i.e., without having any information on which TS applies),
subjects should be more likely to try to transfer TS1, which was
more popular across contexts during phases A/B than TS2, despite
their equal frequency across trials. Indeed, subjects for whom the
old TS to reapply in C3 was TS1 (n = 18) exhibited very strong



Fig. 4. Model simulations from structure learning model with parameters fitted to individual subjects’ behavior in the EEG experiment. Learning curves show mean and
standard error (error bars) across subjects, and represent proportion of correct trials for the xth presentation of each individual input pattern. (A and B) Phase A/B simulations
account for the empirically observed transfer, with greater performance in C0/C1 than C2 in phase B, and the opposite counter-intuitive pattern in phase A. (C) Phase C shows
transfer of old task-set to a new context. (D) Proportion of chosen TS1, TS2 or other actions taken for first 2 iterations of every input pattern of phase C shows a generalization
bias to select previous TS1 more than TS2 (‘‘context popularity-based clustering”), which was in turn more likely than other actions.

3 This ‘‘medium” ROI may correspond do the classic feedback related negativity
(FRN) component, based on its timing (Sambrook & Goslin, 2015) and scalp
distribution (Miltner, Braun, & Coles, 1997).
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transfer (Fig. 3B, middle, t(17) = 4.48, p = 0.0004), while subjects in
the TS2 group (n = 15) did not (Fig. 3B, right; group effect on trans-
fer, t(31) = 2.94, p = 0.006). Moreover, subjects in the TS2 group
exhibited below chance performance in their initial trials, as
expected if they had a prior to try TS1 first, but then subsequently
showed significantly steeper learning for C3 than C4 (Fig. 3D, t
(15) = 3.87, p = 0.002). Thus, overall patterns of learning in phase
C are consistent with an attempt to transfer the most popular
TS1, with preserved ability to nevertheless transfer TS2 and rapidly
detect when it applies, relative to a novel TS.

3.1.3. Context popularity-based priors
Note that the model’s prediction relates to subjects’ priors in a

new context, and thus this prior bias for TS1 vs. TS2 should be
observed on the very first trial of phase C, before subjects have
acquired any information, and independently of their group assign-
ment. We tested this by looking at action choice for the very first
trial of phase C, and whether it matched the action prescribed by
either of the old task-sets (or neither). Subjects exhibited a strong
bias for selecting the action prescribed by TS1 for that specific
stimulus, as opposed to the action prescribed by TS2 or either other
action (Fig. 3E; test against uniform: chi2(3) = 35, p = 10�7; bino-
mial test TS1 action against any other: p = 0.035), strongly support-
ing the popularity prior interpretation. As expected, this original
bias decreased rapidly with experience, but was still present when
looking at the first two iterations of each new input (TS1 > TS2:
t = 1.92, p = 0.06; TS1 > other actions, t = 2.26, p = 0.03).

3.1.4. Model fitting
We fitted subjects’ trial-by-trial behavior with a modified ver-

sion of our structure-learning model (see Section 2.3, Appendix).
The structure learning model fit significantly better than all other
models. In particular, the SRL provided significantly better fit than
FRL (lower AIC: t(28) = 4.4, p = 10�4), and the fit was better for a
significant number of subjects (sign test, p < 0.001; Fig. S3). Fur-
thermore, simulations with fit parameters qualitatively replicated
the main behavioral findings (Fig. 4), validating the use of this
model for model-based analysis of trial-by-trial EEG data.

We hypothesized that, if subjects learn latent structure and use
it for transfer and generalization, we should be able to see evidence
for this structure in their neural encoding of reward expectations
and violation thereof (prediction error). For example, if the brain
treats the task hierarchically, with e.g., the color dimension at
the top of the hierarchy because it facilitates TS clustering of S-A
associations then we should be able to see evidence of that struc-
ture in the nature of their brain response to surprise (prediction
errors). Thus, the EEG signals of surprise should be diminished
for outcomes within a given structure when that same outcome
had already been linked to that structure in a different context.
Our model allows us to quantify each trial’s reward prediction
error, and how it differs from a non-structured RL model (in which
each context and stimulus is treated as its own state; see Section 2).
We thus extracted for each subject the sequence of prediction
errors inferred by our structure model SRL, and further label them
SPE. We also extracted the prediction errors inferred by the best-
fitting non-structure ‘‘flat” reinforcement-learning model FRL,
and further denote them FPE.
3.2. EEG: effect of reward expectations

We next investigated subjects’ brain activity during learning,
focusing on feedback-locked event-related potentials. Specifically,
we investigated with a multiple regression the effect of reward
expectation SPE and FPE on the EEG signal (correct trials of phases
A-B; see Section 2.4.4). We predicted that subjects’ expectations for
reward should be influenced by structure-building and informa-
tion integration within clustered contexts. Thus, structure-
learning model’s SPE should explain trial-by-trial neural variations
better than classic prediction error FPE.

There was robust activity correlating with FPE across time and
electrodes (see Fig. 5B, C, p < 0.05 cluster corrected; Fig. S4 and
Movie S1 for complete pattern of PE-related activity). To investi-
gate the additional effect of structure learning SPE, we first identi-
fied time-space regions of interest (ROIs) that were sensitive to
classic prediction-error FPE: an early region (negative effect at
Cz; see Fig. 5 at 108 ms); a medium region (positive effect at FCz
and Cz; see Fig. 5 at 352 ms)3; and a late region (t > 450 ms), essen-
tially centrally positive (see Section 2). We then tested whether
these three ROIs showed additional sensitivity to unique variance
of structured learning prediction error (SPE), averaging its regression
weights across corresponding time-electrode pairs (weighted by t-
values of FPE effect). The effect of SPE was significant over the
grouped ROI (t(26) = 2.9, p = 0.007), as well as separately within
the early (t = 3.19, p = 0.004) and medium (t = 2.28, p = 0.03) ROIs
(Fig. 6A), but only trending within the late cluster (t = 1.61,
p = 0.12). This indicates that SPE accounted for supplementary vari-
ance within areas sensitive to FPE, supporting the notion that neural
markers of expectation are sensitive to structured information that
could support generalization. A symmetric analysis of additional
FPE effects within SPE ROIs found very similar ROI’s (as expected
from the high correlation between the SPE and PE; see Fig. S4), but
did not show evidence of added variance attributed to FPE (see SI;
Fig. S5), supporting the special importance of structure learning for
subjects in this experiment.
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Fig. 5. EEG effect of prediction error. (A) Left: feedback-locked voltage for a single electrode e (FCZ) at each correct trial, sorted by increasing prediction error value. For each
time-point post feedback t(s), we attempt to explain variance in voltage across trials V(e,t) by two model-based regressors in a multiple linear regression (right). One
regressor is the classic reinforcement learning model prediction error (FPE). SPE (right-most panel) is strongly correlated to FPE, thus we include as second regressor SPE after
orthogonalization by FPE (res(SPE,FPE)). Thus, for each subject, electrode e and time point t, we obtain regression weights bFPE(e,t) and bSPE(e,t), which we can then analyze
across subjects. (B): scalp maps at representative time points of t-statistic of bFPE across subjects, corresponding to the three cluster-groups identified as ROIs. Bold black dots
indicate for visualization purpose corrected p < 0.05 significant effects. (C): average across subjects of flat prediction error regressor bFPE, for electrodes FCz, Cz and POz. Circles
indicate significance against 0 at p < 0.05 (cluster-based permutation tested).

Fig. 6. SPE effects in EEG. (A) Average regression weight for unique structure RL variance in each group ROI shows that SPE accounts for additional variance beyond flat PE
(error bars indicate standard error). (B) Early + medium SPE effect predicts behavior. We separate subjects into ‘‘high” and ‘‘low” SPE effect groups, by median-split. Left:
‘‘High” group showed stronger ‘‘within cluster” transfer, as indicated by increase in TS1 vs. TS2 performance difference between phase A and B. Middle: ‘‘high” group showed
a stronger bias to select previously more clustered action (TS1 action). Right: ‘‘High” group shows significantly more generalization of old task-sets to new context in phase C.
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We further tested whether the degree of neural sensitivity to
SPE predicted behavioral evidence of structure. We pooled those
ROIs sensitive to SPE (early and medium), and measured the SPE
effect size as the weighted average of SPE beta values on this
pooled ROI. We then investigated its link to the three main
indicators of structure in behavior: transfer – within existing
clusters, phase B, and to novel contexts, phase C – and clustering,
as indicated by the degree to which initial actions show evi-
dence for generalizing those TS that were most popular across
contexts.
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We first investigated whether the SPE effect in phases A and B
predicted transfer of learned structure in early trials of phase
C. Indeed, we found a significant correlation between the bSPE and
the early bias in selecting old TS actions (Spearman q = 0.38,
p = 0.05). To further investigate this link, we separated subjects into
‘‘low” and ‘‘high” SPE effect groups by median split. The ‘‘high”
group exhibited significant behavioral effects of transfer, including
significant within cluster (phase B) transfer (t = 2.6, p = 0.02; Fig. 6B
left) and across context (phase C) generalization (t = 2.35, p = 0.036;
Fig. 6B right). In contrast, the low group showed neither effect
(t = �0.3, t = �0.16, ns), although the effect of group on generaliza-
tion did not reach significance (t = 1.63, p = 0.12; t = �0.16 ns).
Additionally, the distribution of first trial choices (‘‘clustering
prior”) was significantly different across groups (chi2(2) = 24;
p = 6 � 10�6; Fig. 6B middle), indicating that the ‘‘low” SPE group
subjects were more likely to pick other actions and less likely to
try the more popular TS1 actions, compared to the high SPE group
(t = 2.9; p = 0.007). Taken together, these results support the
hypothesis that subjects showing more evidence of structured
learning in the EEG representation of expectations also exhibited
more robust evidence of structure learning and generalization in
behavior. Further, neural evidence of structured SPE was predictive
of subsequent transfer and clustering priors in phase C (Fig. 6B),
despite the fact that this phasewas not included in the EEG analysis.
4. Discussion

These findings, replicated across two behavioral experiments,
provide novel and strong support for the notion that subjects build
latent rule structure during simple learning tasks, consistent with
our computational model of hierarchical clustering. The degree of
such structured behaviorwas also related tomarkers of hierarchical
structure learning in EEG. Our results imply that subjects do not
simply learn to predict outcomes for the given perceptual state
and motor action spaces. Instead, they create latent variables that
cluster together contexts corresponding to the same lower level
rules. These latent rule pointers condition stimulus-action outcome
predictions, and thus choice, indicating that learning occurs on the
structured, latent state space, rather than on the sensory input vari-
ables. Such structure learning affords two levels of generalization.
First, new stimuli, and their action-outcome consequents, do not
need to be disembodied from existing knowledge, but can instead
be appended onto existing latent rule-sets, rather than attached to
a specific context. This provides potential immediate transfer to
all contexts cuing this rule-set, regardless of which context was
active when the new information was gathered. (As a real world
example, consider a language as a rule-set. If one learns a newword
label for a newobject in a given language spoken by a particular per-
son (context), one can then immediately use that word oneself to
other people known to speak the language.) This is evidenced by fas-
ter learning in phase B for contexts that have provided an opportu-
nity for clustering. Such a resultwas predicted by ourmodel (Collins
& Frank, 2013) but had not yet been tested empirically.

Second, new contexts can be recognized as cueing to an existing
cluster if they condition the same stimulus-action-outcome predic-
tions. This allows for immediate transfer of an entire known latent
rule to new contexts, even for as yet unencountered stimuli. We
observe this in phase C where subjects learn faster for a new con-
text corresponding to an old rule than a new one (Collins & Frank,
2013; Collins et al., 2014). Moreover, our findings show for the first
time that their prior tendencies to select rule structures are consis-
tent with a context-popularity based clustering. A principled way
to cluster an unknown number of contexts into latent states that
point to the same abstract rule can be achieved by a nonparametric
Bayesian framework. Our model used the ‘‘Chinese restaurant
prior”, building on existing models of conditioning (Gershman
et al., 2010). However, while those models use this prior to cluster
experiences (trials) indicative of the same latent cause, we cluster
the number of discrete contexts rather than individual trials. We
thus predicted that even with equal popularity of rules across time,
subjects would be a priori more likely to try out rules that were
more popular across contexts. (In the language example, our model
predicts that one’s expectation for the language of a new speaker
would be proportional to the relative number of speakers of that
language they had encountered, and not simply the relative num-
ber of words they had heard in each language, which could be
biased by an inordinate number of experiences with a given for-
eign speaker.) This prediction was confirmed both by comparing
the overall degree of transfer of old popular vs. less popular rules,
and by showing a biased action selection pattern at the very first
trial in a new context, prior to having collected any information
about that new context.

It is remarkable that subjects build structure despite the fact
that they don’t benefit from it immediately, as indicated by the
lower performance for the two contexts linking to the same rule
during the initial learning phase (before the nature of the structure
could be known). This study hints as an explanation for this prior
tendency to build structure, as it affords two kinds of advantages
in terms of long-term flexible generalization and transfer of
learned knowledge.

As expected from published literature. we found that the ERP
signal is sensitive trial-by-trial to reward expectation (Cavanagh,
2015; Cavanagh et al., 2010; Fischer & Ullsperger, 2013; Holroyd
et al., 2008; Sambrook & Goslin, 2015; Walsh & Anderson, 2012).
We tested whether this signal included only purely model-free
RL information, or whether it integrated expectations gathered
via structure learning that provided transfer of information across
context clusters. EEG results support the fact that the brain repre-
sents this latent structure RL expectation, rather than a simpler
one. Furthermore, the degree to which the structure expectation
was represented predicted observed behavioral transfer. This sup-
ports previous fMRI findings showing that the prediction error sig-
nal may include complex knowledge (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Fischer & Ullsperger, 2013; Hampton,
Bossaerts, & O’Doherty, 2006), and recent studies showing that
frontocentral EEG signals reflect cognitive control rather than
model-free learning (Cavanagh, Eisenberg, Guitart-Masip, Huys, &
Frank, 2013) extending these to the domain of structure learning.
Indeed, our neural model of structure learning (Collins & Frank,
2013) involves similar cognitive control mechanisms to prevent
motor action selection until uncertainty about the currently valid
latent rule is resolved. Note that we are agnostic as to the source
of the EEG signals, given the limited research into how standard
ERP components are implicated in hierarchically structured tasks
with multiple dimensions. Thus our findings are limited in their
ability to inform us of the underlying neural sources (Luck,
2014), but nevertheless facilitate characterization of the cognitive
representations involved (beyond those inferred via indirect
behavioral measures associated with RT switch costs and transfer)
by assessing reward expectations (and violations thereof) associ-
ated with structured vs. non-structured learning.

Our structure-learningmodel complements a growing literature
on hierarchical reinforcement-learning, state-space or structure
learning. Related literature on acquired equivalence (Gerraty,
Davidow, Wimmer, Kahn, & Shohamy, 2014; Shohamy & Turk-
Browne, 2013) shows that humans can link together stimuli that
never appear together but which similarly predict subsequently
appearing stimuli. Our finding of transfer within rule-sets extends
this type of association to stimuli within hierarchical task-sets,
and explores the nature of the clustering link. Other models have
investigated how subjects find a relevant smaller state space on
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which to perform RL (Gershman et al., 2010; Wilson & Niv, 2011),
even in a context-dependent way (Badre, Kayser, & Esposito,
2010; Frank & Badre, 2011). However, these models learned to
ignore irrelevant dimensions entirely, essentially relating them to
attentional processes. In contrast, here all dimensions and features
are relevant, but latent variables are created that abstract away
some features of input dimensions, but not others. Furthermore,
this latent variable is an abstract object in itself, rather than being
equated to the sensory contexts it is selected in –providing the
two generalization possibilities: extending the content of the
object, and selecting it in new contexts. This property is similar to
some of our previous work where structures are cued by episodic
contexts (Collins & Koechlin, 2012; Donoso, Collins, & Koechlin,
2014), but is extended to building this structure even in the absence
of a temporal shaping process. Other modeling work has proposed
abstract representation of latent hierarchical task-rules or abstract
task-relevant states, implicating OFC or ACC (Holroyd & McClure,
2015;Wilson, Takahashi, Schoenbaum, & Niv, 2014). Critically, con-
trary to our model, they did not provide a mechanism for the cre-
ation of these abstract representations, nor for the ability to
append novel associations to these structures, which is crucial to
the ability to transfer knowledge and cluster together contexts in
a behaviorally, rather than perceptually, relevant manner.

These findings show that subjects were able to build structure
that afforded strongest potential for future generalization – even
though they did not benefit from it immediately. Two separable
kinds of transfer were observed: the ability to reselect an abstract
rule in a new context, in proportion to its popularity; and the abil-
ity to expand an abstract rule for all members of the cluster. EEG
analysis confirmed that structure-dependent expectations were
represented in the neural signal to an extent that predicted behav-
ior. These results indicate the crucial importance played by build-
ing abstract structure, even in simple learning environments.
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